从熊猫数据框的列中提取标签
我有一个数据框df
.我想从其中Max == 45的推文中提取主题标签.
i have a dataframe df
. I want to extract hashtags from tweets where Max==45.:
Max Tweets
42 via @VIE_unlike at #fashion
42 Ny trailer #katamaritribute #ps3
45 Saved a baby bluejay from dogs #fb
45 #Niley #Niley #Niley
我正在尝试类似的操作,但是它给出了空的数据框:
i m trying something like this but its giving empty dataframe:
df.loc[df['Max'] == 45, [hsh for hsh in 'tweets' if hsh.startswith('#')]]
大熊猫中有什么东西可以用来有效且快速地执行此操作.
is there something in pandas which i can use to perform this effectively and faster.
您可以使用pd.Series.str.findall
:
In [956]: df.Tweets.str.findall(r'#.*?(?=\s|$)')
Out[956]:
0 [#fashion]
1 [#katamaritribute, #ps3]
2 [#fb]
3 [#Niley, #Niley, #Niley]
这将返回一列list
s.
如果您要先过滤然后查找,则可以使用boolean indexing
轻松进行:
If you want to filter first and then find, you can do so quite easily using boolean indexing
:
In [957]: df.Tweets[df.Max == 45].str.findall(r'#.*?(?=\s|$)')
Out[957]:
2 [#fb]
3 [#Niley, #Niley, #Niley]
Name: Tweets, dtype: object
此处使用的正则表达式为:
The regex used here is:
#.*?(?=\s|$)
要了解它,请将其分解:
To understand it, break it down:
-
#.*?
-对以#标签开头的单词进行非贪婪匹配 -
(?=\s|$)
-提前查看单词的末尾或句子的末尾
-
#.*?
- carries out a non-greedy match for a word starting with a hashtag -
(?=\s|$)
- lookahead for the end of the word or end of the sentence
如果您的单词中间有#
而不是#em标签,则可能会产生误报,而这些误报是您不想要的.在这种情况下,您可以修改您的正则表达式以包括一个回首:
If it's possible you have #
in the middle of a word that is not a hashtag, that would yield false positives which you wouldn't want. In that case, You can modify your regex to include a lookbehind:
(?:(?<=\s)|(?<=^))#.*?(?=\s|$)
后面的正则表达式断言空格或句子开头必须在#
字符之前.
The regex lookbehind asserts that either a space or the start of the sentence must precede a #
character.