Codeforces 1426F 题意 思路 程序
Codeforces Round #674 (Div. 3) F - Number of Subsequences
给定一个长度为(n)字符串,仅包含({a,b,c,?})这四种字符。
字符(?)为通配符,可以匹配({a,b,c})三种字符中的任意一种。如果字符串内含有(k)个通配符,则最终可以得到(3^k)个不同字符串。
问在这(3^k)个不同字符串内有多少为"abc"的子序列,答案对(10^9+7)取模。
限制
(3leq nleq 200000)
思路
考虑同时对(3^k)个字符串进行dp
建立三种dp状态,分别表示处理到当前位置时子序列为"a","ab","abc"的个数
新建一个变量(cnt),储存处理到某个位置时出现了多少个不同的字符串,初始时可以当作只有一种字符串
按顺序遍历给定的字符串:
如果当前字符为'a',则表示子序列为"a"的个数需要新增(cnt)个。((dp[a]=dp[a]+cnt))
如果当前字符为'b',则表示子序列"ab"可以由当前的'b'以及之前出现的'a'拼接出来,个数可以新增(dp[a])个。((dp[ab]=dp[ab]+dp[a]))
如果当前字符为'c',同样表示子序列"abc"可以由当前的'c'以及之前出现的"ab"拼接出来,个数可以新增(dp[ab])个。((dp[abc]=dp[abc]+dp[ab]))
如果当前字符为'?',可以通配为三种字符的任意一种,此时不同的字符串数量会变成原本的(3)倍。
这就表示,如果暂时不考虑这个'?'带来的影响,那么之前计数中出现的(dp[a] / dp[ab] / dp[abc])都要变成原先的(3)倍。
再考虑'?'带来的影响,分别考虑它是三种字符的任意一种带来的影响,可以得到与上方三类讨论相同。(按顺序执行下述过程)
最后(dp[abc])即代表答案。
程序
(46ms/1000ms)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
char s[200050];
int main()
{
int n;
scanf("%d%s",&n,s+1);
ll dp[3]={0,0,0},cnt=1;
for(int i=1;i<=n;i++)
{
if(s[i]=='a')
dp[0]=(dp[0]+cnt)%mod;
else if(s[i]=='b')
dp[1]=(dp[1]+dp[0])%mod;
else if(s[i]=='c')
dp[2]=(dp[2]+dp[1])%mod;
else
{
dp[2]=(dp[2]*3+dp[1])%mod;
dp[1]=(dp[1]*3+dp[0])%mod;
dp[0]=(dp[0]*3+cnt)%mod;
cnt=cnt*3%mod;
}
}
printf("%lld
",dp[2]);
return 0;
}