
dp[i][j]=max{dp[i-1][j-v[i]]+c[i],dp[i-1][j]};
for(i=1;i<=n;i++){
for(j=v[i];j<=v;j++){//注意这里是从v[i]开始到V
if(j>=v[i])
dp[j]=max{dp[j],dp[j-v[i]]+c[i]};
}
}
dp[j]=max{dp[j],dp[j-v[i]]+c[i]};
dp[i][j]=max{dp[i-1][v-k*v[i]]+k*c[i]|0<=k<=n[i]};(k表示第i种物品放入k件);
for(i=1;i<=n;i++){
for(j=v;j>=0;j--){
for(k=1;k<=n[i];k++){
if(j>=k*v[i])
dp[i][j]=max(dp[i-1][v-k*v[i]]+k*c[i])
}
}
f(4) = f(3) + f(2) + f(1);
最长公共子序列:
根据最长公共子序列问题的性质,我们可以规定dp[i][j]为字符串1的前i个字符和字符串2的前j个字符的最长公共子序列的长度, 由于下面涉及到i-1和j-1,那么这个时候我们一般从i=1和j=1开始到i<=len1, j<=len2。
1ch1[i-1] = ch2[j-1] ,那么dp[i][j]= dp[i-1][j-1] + 1;
这个时候所有i=0或j=0的dp[i][j]= 0;
0 ; i = 0或j= 0;
就有 dp = dp[i][j] = dp[i-1][j-1] + 1; i > 0且j> 0 且ch1[i-1]= ch2[j-1];
dp[i][j]= max {dp[i-1][j] , dp[i][j-1]}; i > 0且j> 0且ch1[i-1]!= ch2[j-1];
3、最大子序列的和问题
给定一个序列a1,a2..........an;
求子序列的和最大问题dp[i]表示以ai结尾的子序列和,max为最大子序列和
核心:
1如果输入的数据全部为负数则最大值就是序列中的一个最大值
2如果有正数
for(i=1;i<=n;i++){
dp[i]=dp[i-1]+ai;
if(dp[i]<0)
dp[i]=0;
if(max<dp[i])
max=dp[i];
}
2、最长上升或下降子序列
给定一个序列a1,a2..........an;
dp[i]表示以ai结尾的最长上升子序列长度(下降相反)
核心代码:
for(i=1;i<=n;i++){
dp[i]=1;
for(k=1;k<i;k++){
if(ak<ai&&dp[i]<dp[k]+1)
dp[i]=dp[k]+1;
}
}