从2d numpy数组的每一行中选择随机的非零元素
我有一个二维数组
a = array([[5, 0, 1, 0],
[0, 1, 3, 5],
[2, 3, 0, 0],
[4, 0, 2, 4],
[3, 2, 0, 3]])
和一维数组
b = array([1, 2, 1, 2, 2])
哪个( b
)告诉我们要从数组 a
的每一行中选择多少个非零元素.
which (b
) tells how many non-zero elements we want to choose from each row of the array a
.
例如, b [0] = 1
告诉我们,我们必须从 a [0]
, b [1]中选择1个非零元素] = 2
告诉我们,我们必须从 a [1]
中选择2个非零元素,依此类推.
For example, b[0] = 1
tells us that we have to choose 1 non-zero element from a[0]
, b[1] = 2
tells us that we have to choose 2 non-zero elements from a[1]
, and so on.
对于一维数组,可以使用 np.random.choice
完成,但是我找不到如何对二维数组进行操作,因此必须使用for
循环会减慢计算速度.
For a 1d array, it can be done using np.random.choice
, but I can't find how to do it for a 2d array, so I have to use a for
loop which slows the computation.
我希望将结果作为2d数组作为
I want the result as 2d array as
array([[5, 0, 0, 0],
[0, 1, 0, 5],
[2, 0, 0, 0],
[0, 0, 2, 4],
[3, 2, 0, 0]])
在这里,第1行有1个元素,第2行有2个元素,第3行有1个元素,依此类推,如数组b所示.
Here, we have 1 element in row 1, 2 elements in row 2, 1 element in row 3 and so on as given in array b.
它看起来像是竞争编程问题.
It looks like a Competitive Programming problem.
我认为您不能使用numpy.random.choice获得结果(我可能是错误的).
I don't think that you can achieve the results using numpy.random.choice (I may be wrong).
无论如何,请这样想.要从大小为 n
的一维数组中选择 x
个非零元素,在最坏的情况下,它的复杂度为O(n).而且,对于2D数组,如果您采用相同的幼稚方法,则将为O(n ^ 2).
Anyways, think of it like this. To select x
number of non-zero elements from a 1D array of size n
, it will be of O(n) complexity in the worst case. And, for a 2D array it will be O(n^2) if you follow the same naive approach.
这篇帖子与您的帖子几乎相似问题,但numpy.nonzero也是O(n ^ 2)函数.
this post is almost similar to your question, but numpy.nonzero also is an O(n^2) function.