Python 3:在没有 NumPy 的情况下将向量乘以矩阵
我对 Python 还很陌生,正在尝试创建一个函数来将向量乘以矩阵(任何列大小).例如:
I'm fairly new to Python and trying to create a function to multiply a vector by a matrix (of any column size). e.g.:
multiply([1,0,0,1,0,0], [[0,1],[1,1],[1,0],[1,0],[1,1],[0,1]])
[1, 1]
这是我的代码:
def multiply(v, G):
result = []
total = 0
for i in range(len(G)):
r = G[i]
for j in range(len(v)):
total += r[j] * v[j]
result.append(total)
return result
问题是,当我尝试选择矩阵 (r[j]) 中每列的第一行时,会显示错误列表索引超出范围".有没有其他不使用 NumPy 完成乘法的方法?
The problem is that when I try to select the first row of each column in the matrix (r[j]) the error 'list index out of range' is shown. Is there any other way of completing the multiplication without using NumPy?
Numpythonic 方法:(使用 numpy.dot
以获得两个矩阵的点积)
The Numpythonic approach: (using numpy.dot
in order to get the dot product of two matrices)
In [1]: import numpy as np
In [3]: np.dot([1,0,0,1,0,0], [[0,1],[1,1],[1,0],[1,0],[1,1],[0,1]])
Out[3]: array([1, 1])
Pythonic 方法:
The Pythonic approach:
你的第二个 for
循环的长度是 len(v)
并且你试图基于它索引 v
所以你得到了索引错误.作为一种更pythonic的方式,您可以使用 zip
函数来获取列表的列,然后在列表理解中使用 starmap
和 mul
:>
The length of your second for
loop is len(v)
and you attempt to indexing v
based on that so you got index Error . As a more pythonic way you can use zip
function to get the columns of a list then use starmap
and mul
within a list comprehension:
In [13]: first,second=[1,0,0,1,0,0], [[0,1],[1,1],[1,0],[1,0],[1,1],[0,1]]
In [14]: from itertools import starmap
In [15]: from operator import mul
In [16]: [sum(starmap(mul, zip(first, col))) for col in zip(*second)]
Out[16]: [1, 1]