ValueError:检查目标时出错:预期density_2具有3维,但数组的形状为(10000,1)
我正在使用keras MLP网络对3-D字向量input_shape=(None,24,73)
进行二进制分类.我使用了两个密集层dense_1
和dense_2
.在dense_2
处出现一个我无法解决的错误.
I am using keras MLP network for binary classification of 3-D word vector input_shape=(None,24,73)
. I have used two dense layers dense_1
and dense_2
. At dense_2
I'm getting an error which I've not been able to solve.
这是我的模型摘要.
Layer (type) Output Shape Param #
=================================================================
dense_1 (Dense) (None, 8, 90) 6660
_________________________________________________________________
dense_2 (Dense) (None, 8, 1) 91
=================================================================
Total params: 6,751
Trainable params: 6,751
Non-trainable params: 0
ValueError:检查目标时出错:预期density_2具有3 尺寸,但数组的形状为(22,1)
ValueError: Error when checking target: expected dense_2 to have 3 dimensions, but got array with shape (22, 1)
由于您执行了binary_classification任务,因此最后一层应如下所示
Since you have a binary_classification task your last layer should look something like this
model.add(Dense(1, activation='sigmoid'))
现在,您的模型已放出与形状不匹配的3D阵列 您的目标(2D)
Right now you model is out puting 3D array which don't match the shape of your target (2D)