多处理比单处理运行速度慢
我正在尝试使用多重处理来跨多个进程运行许多模拟.但是,据我所知,我编写的代码仅使用其中一个进程.
I'm attempting to use multiprocessing to run many simulations across multiple processes; however, the code I have written only uses 1 of the processes as far as I can tell.
已更新
由于@PaulBecotte,我已经使所有流程都能正常工作(我认为);但是,多处理似乎比非多处理要慢得多.
I've gotten all the processes to work (I think) thanks to @PaulBecotte ; however, the multiprocessing seems to run significantly slower than its non-multiprocessing counterpart.
例如,不包括函数和类的声明/实现和导入,我有:
For instance, not including the function and class declarations/implementations and imports, I have:
def monty_hall_sim(num_trial, player_type='AlwaysSwitchPlayer'):
if player_type == 'NeverSwitchPlayer':
player = NeverSwitchPlayer('Never Switch Player')
else:
player = AlwaysSwitchPlayer('Always Switch Player')
return (MontyHallGame().play_game(player) for trial in xrange(num_trial))
def do_work(in_queue, out_queue):
while True:
try:
f, args = in_queue.get()
ret = f(*args)
for result in ret:
out_queue.put(result)
except:
break
def main():
logging.getLogger().setLevel(logging.ERROR)
always_switch_input_queue = multiprocessing.Queue()
always_switch_output_queue = multiprocessing.Queue()
total_sims = 20
num_processes = 5
process_sims = total_sims/num_processes
with Timer(timer_name='Always Switch Timer'):
for i in xrange(num_processes):
always_switch_input_queue.put((monty_hall_sim, (process_sims, 'AlwaysSwitchPlayer')))
procs = [multiprocessing.Process(target=do_work, args=(always_switch_input_queue, always_switch_output_queue)) for i in range(num_processes)]
for proc in procs:
proc.start()
always_switch_res = []
while len(always_switch_res) != total_sims:
always_switch_res.append(always_switch_output_queue.get())
always_switch_success = float(always_switch_res.count(True))/float(len(always_switch_res))
print '\tLength of Always Switch Result List: {alw_sw_len}'.format(alw_sw_len=len(always_switch_res))
print '\tThe success average of switching doors was: {alw_sw_prob}'.format(alw_sw_prob=always_switch_success)
产生:
Time Elapsed: 1.32399988174 seconds
Length: 20
The success average: 0.6
但是,我试图将其用于total_sims = 10,000,000
而不是num_processes = 5
,并且这样做花费的时间明显长于使用1个进程(在3分钟内返回了1个进程).我正在与之进行比较的非多处理对象是:
However, I am attempting to use this for total_sims = 10,000,000
over num_processes = 5
, and doing so has taken significantly longer than using 1 process (1 process returned in ~3 minutes). The non-multiprocessing counterpart I'm comparing it to is:
def main():
logging.getLogger().setLevel(logging.ERROR)
with Timer(timer_name='Always Switch Monty Hall Timer'):
always_switch_res = [MontyHallGame().play_game(AlwaysSwitchPlayer('Monty Hall')) for x in xrange(10000000)]
always_switch_success = float(always_switch_res.count(True))/float(len(always_switch_res))
print '\n\tThe success average of not switching doors was: {not_switching}' \
'\n\tThe success average of switching doors was: {switching}'.format(not_switching=never_switch_success,
switching=always_switch_success)
通过更改monty_hall_sim返回列表的理解,让do_work将列表添加到输出队列中,然后进行扩展,我能够使我的代码运行得更快. main的结果列表以及输出队列返回的列表.使它在大约13秒内运行.
I was able to get my code to run significantly faster by changing monty_hall_sim's return to a list comprehension, having do_work add the lists to the output queue, and then extend the results list of main with the lists returned by the output queue. Made it run in ~13 seconds.