Tensorflow-ValueError:无法将NumPy数组转换为Tensor(不支持的对象类型float)
上一个问题的继续: Tensorflow-TypeError:'int '对象不可迭代
我的训练数据是一个列表列表,每个列表包含1000个浮点数.例如,x_train[0] =
My training data is a list of lists each comprised of 1000 floats. For example, x_train[0] =
[0.0, 0.0, 0.1, 0.25, 0.5, ...]
这是我的模特:
model = Sequential()
model.add(LSTM(128, activation='relu',
input_shape=(1000, 1), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(128, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
opt = tf.keras.optimizers.Adam(lr=1e-3, decay=1e-5)
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=3, validation_data=(x_test, y_test))
这是我遇到的错误:
Traceback (most recent call last):
File "C:\Users\bencu\Desktop\ProjectFiles\Code\Program.py", line 88, in FitModel
model.fit(x_train, y_train, epochs=3, validation_data=(x_test, y_test))
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 728, in fit
use_multiprocessing=use_multiprocessing)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 224, in fit
distribution_strategy=strategy)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 547, in _process_training_inputs
use_multiprocessing=use_multiprocessing)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 606, in _process_inputs
use_multiprocessing=use_multiprocessing)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\data_adapter.py", line 479, in __init__
batch_size=batch_size, shuffle=shuffle, **kwargs)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\data_adapter.py", line 321, in __init__
dataset_ops.DatasetV2.from_tensors(inputs).repeat()
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\data\ops\dataset_ops.py", line 414, in from_tensors
return TensorDataset(tensors)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\data\ops\dataset_ops.py", line 2335, in __init__
element = structure.normalize_element(element)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\data\util\structure.py", line 111, in normalize_element
ops.convert_to_tensor(t, name="component_%d" % i))
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1184, in convert_to_tensor
return convert_to_tensor_v2(value, dtype, preferred_dtype, name)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1242, in convert_to_tensor_v2
as_ref=False)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1296, in internal_convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\tensor_conversion_registry.py", line 52, in _default_conversion_function
return constant_op.constant(value, dtype, name=name)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 227, in constant
allow_broadcast=True)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 235, in _constant_impl
t = convert_to_eager_tensor(value, ctx, dtype)
File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 96, in convert_to_eager_tensor
return ops.EagerTensor(value, ctx.device_name, dtype)
ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type float).
我自己尝试过搜索错误,我发现了一些有关使用tf.convert_to_tensor
函数的信息.我试图通过它来传递训练和测试列表,但是该功能不会接受它们.
I've tried googling the error myself, I found something about using the tf.convert_to_tensor
function. I tried passing my training and testing lists through this but the function won't take them.
任何帮助将不胜感激.谢谢.
Any help would be massively appreciated. Thanks.
问题的根源在于使用 lists 作为输入,而不是Numpy数组. Keras/TF不支持前者.一个简单的转换是:x_array = np.asarray(x_list)
.
The problem's rooted in using lists as inputs, as opposed to Numpy arrays; Keras/TF doesn't support former. A simple conversion is: x_array = np.asarray(x_list)
.
下一步是确保以预期的格式馈送数据;对于LSTM,将是尺寸为(batch_size, timesteps, features)
-或等效为(num_samples, timesteps, channels)
的3D张量.最后,作为调试提示,为您的数据打印所有形状.完成上述所有任务的代码如下:
The next step's to ensure data is fed in expected format; for LSTM, that'd be a 3D tensor with dimensions (batch_size, timesteps, features)
- or equivalently, (num_samples, timesteps, channels)
. Lastly, as a debug pro-tip, print ALL the shapes for your data. Code accomplishing all of the above, below:
Sequences = np.asarray(Sequences)
Targets = np.asarray(Targets)
show_shapes()
Sequences = np.expand_dims(Sequences, -1)
Targets = np.expand_dims(Targets, -1)
show_shapes()
# OUTPUTS
Expected: (num_samples, timesteps, channels)
Sequences: (200, 1000)
Targets: (200,)
Expected: (num_samples, timesteps, channels)
Sequences: (200, 1000, 1)
Targets: (200, 1)
作为一个提示,我注意到您正在通过main()
运行,因此您的IDE可能缺少类似于Jupyter的基于单元的执行;我强烈推荐 Spyder IDE .就像添加# In[]
并按下面的Ctrl + Enter
一样简单:
As a bonus tip, I notice you're running via main()
, so your IDE probably lacks a Jupyter-like cell-based execution; I strongly recommend the Spyder IDE. It's as simple as adding # In[]
, and pressing Ctrl + Enter
below:
使用的功能:
def show_shapes(): # can make yours to take inputs; this'll use local variable values
print("Expected: (num_samples, timesteps, channels)")
print("Sequences: {}".format(Sequences.shape))
print("Targets: {}".format(Targets.shape))