numpy.cross()性能不佳
我一直在进行一些性能测试,以提高我正在编写的宠物项目的性能.这是一个非常耗费大量数据的应用程序,因此我一直在与Numpy一起玩,以提高计算性能.
I've been doing some performance testing in order to improve the performance of a pet project I'm writing. It's a very number-crunching intensive application, so I've been playing with Numpy as a way of improving computational performance.
但是,以下性能测试的结果令人惊讶....
However, the result from the following performance tests were quite surprising....
测试源代码 (已更新了用于提升和批量提交的测试用例)
import timeit
numpySetup = """
import numpy
left = numpy.array([1.0,0.0,0.0])
right = numpy.array([0.0,1.0,0.0])
"""
hoistSetup = numpySetup +'hoist = numpy.cross\n'
pythonSetup = """
left = [1.0,0.0,0.0]
right = [0.0,1.0,0.0]
"""
numpyBatchSetup = """
import numpy
l = numpy.array([1.0,0.0,0.0])
left = numpy.array([l]*10000)
r = numpy.array([0.0,1.0,0.0])
right = numpy.array([r]*10000)
"""
pythonCrossCode = """
x = ((left[1] * right[2]) - (left[2] * right[1]))
y = ((left[2] * right[0]) - (left[0] * right[2]))
z = ((left[0] * right[1]) - (left[1] * right[0]))
"""
pythonCross = timeit.Timer(pythonCrossCode, pythonSetup)
numpyCross = timeit.Timer ('numpy.cross(left, right)' , numpySetup)
hybridCross = timeit.Timer(pythonCrossCode, numpySetup)
hoistCross = timeit.Timer('hoist(left, right)', hoistSetup)
batchCross = timeit.Timer('numpy.cross(left, right)', numpyBatchSetup)
print 'Python Cross Product : %4.6f ' % pythonCross.timeit(1000000)
print 'Numpy Cross Product : %4.6f ' % numpyCross.timeit(1000000)
print 'Hybrid Cross Product : %4.6f ' % hybridCross.timeit(1000000)
print 'Hoist Cross Product : %4.6f ' % hoistCross.timeit(1000000)
# 100 batches of 10000 each is equivalent to 1000000
print 'Batch Cross Product : %4.6f ' % batchCross.timeit(100)
原始结果
Python Cross Product : 0.754945
Numpy Cross Product : 20.752983
Hybrid Cross Product : 4.467417
最终结果
Python Cross Product : 0.894334
Numpy Cross Product : 21.099040
Hybrid Cross Product : 4.467194
Hoist Cross Product : 20.896225
Batch Cross Product : 0.262964
不用说,这不是我预期的结果.纯Python版本的执行速度比Numpy快30倍.在其他测试中,Numpy的性能要好于Python的等效性能(这是预期的结果).
Needless to say, this wasn't the result I expected. The pure Python version performs almost 30x faster than Numpy. Numpy performance in other tests has been better than the Python equivalent (which was the expected result).
所以,我有两个相关的问题:
So, I've got two related questions:
- 有人能解释为什么NumPy在这种情况下表现这么差吗?
- 我有什么办法可以解决吗?
尝试使用更大的数组.我认为,仅在此处调用numpy
方法的开销就超出了Python版本所需的简单几个列表访问权限.如果您处理更大的数组,我认为您会看到numpy
的巨大胜利.
Try this with larger arrays. I think that just the cost of calling the methods of numpy
here overruns the simple several list accesses required by the Python version. If you deal with larger arrays, I think you'll see large wins for numpy
.