根据groupby分割csv文件数千次
(An adaptation of David Erickson's question here)
给出一个包含A,B和C列以及一些值的CSV文件:
Given a CSV file with columns A, B, and C and some values:
echo 'a,b,c' > file.csv
head -c 10000000 /dev/urandom | od -d | awk 'BEGIN{OFS = ","}{print $2, $3, $4}' | head -n 10000 >> file.csv
我们想按a和b列进行排序:
We would like to sort by columns a and b:
sort -t ',' -k1,1n -k2,2n file.csv > file_.csv
head -n 3 file_.csv
>a,b,c
3,50240,18792
7,54871,39438
然后为每个唯一对(a, b)
创建一个名为'{a}_Invoice_{b}.csv'
的新CSV.
And then for every unique pair (a, b)
create a new CSV titled '{a}_Invoice_{b}.csv'
.
主要挑战似乎是写入数千个文件的I/O开销-我开始尝试使用awk
,但遇到了awk: 17 makes too many open files
.
The main challenge seems to be the I/O overhead of writing thousands of files - I started trying with awk
but ran into awk: 17 makes too many open files
.
是否可以使用awk,Python或其他脚本语言来更快地做到这一点?
Is there a quicker way to do this, in awk, Python, or some other scripting language?
其他信息:
- 我知道我可以在Pandas中做到这一点-我正在寻找一种使用文本处理的更快方法
- 尽管我使用
urandom
生成了示例数据,但实际数据具有重复出现的值:例如a=3, b=7
的几行.如果是这样,则应将它们另存为一个文件. (这个想法是复制Pandas的groupby-> to_csv)
- I know I can do this in Pandas - I'm looking for a faster way using text processing
- Though I used
urandom
to generate the sample data, the real data has runs of recurring values: for example a few rows wherea=3, b=7
. If so these should be saved as one file. (The idea is to replicate Pandas' groupby -> to_csv)
在python中:
import pandas as pd
df = pd.read_csv("file.csv")
for (a, b), gb in df.groupby(['a', 'b']):
gb.to_csv(f"{a}_Invoice_{b}.csv", header=True, index=False)
在awk中,您可以像这样拆分,您需要将标头放回每个生成的文件上:
In awk you can split like so, you will need to put the header back on each resultant file:
awk -F',' '{ out=$1"_Invoice_"$2".csv"; print >> out; close(out) }' file.csv
将标题行添加回去:
awk -F',' 'NR==1 { hdr=$0; next } { out=$1"_Invoice_"$2".csv"; if (!seen[out]++) {print hdr > out} print >> out; close(out); }' file.csv
最后一个示例的好处是输入file.csv
无需排序,只需一次处理即可.
The benefit of this last example is that the input file.csv
doesn't need to be sorted and is processed in a single pass.