积性函数

莫比乌斯反演

莫比乌斯函数

定义: 将 (x) 质因子分解分解 (x=p_{1}^{d_{1}}p_{2}^{d_{2}}p_{3}^{d_{3}}···p_{k}^{d_{k}}).

[ mu (x)=left{ egin{array}{rcl} 0 & & exists d_{i}ge 2\ 1 & & x=1\ (-1)^k & & end{array} ight. ]

莫比乌斯函数筛法:

int pri[N],vis[N],Mobius[N],tot;
void sieve_Mobius(int x)
{
    vis[1]=Mobius[1]=1;
    for(register int i=2;i<=x;i++)
    {
        if(!vis[i])
        {
            pri[++tot]=i;
            Mobius[i]=-1;//质数只有一个质因子是他本身
        }
        for(register int j=1;j<=tot&&i*pri[j]<=x;j++)
        {
            vis[i*pri[j]]=1;
            if(!(i%pri[j]))
            {
                Mobius[i*pri[j]]=0;//i*pri[j]里至少包含两个pri[j]
                break;
            }
            Mobius[i*pri[j]]=-Mobius[i];//积性函数直接乘
        }
    }
}

性质1: 定义 (S(x)=sum_{dmid n}^{}mu (d)),则有:

[S(n)=left{egin{matrix} 1 n=1\ 0 n>1\ end{matrix} ight.]

证明:
(n=1) 时,结论显然成立。

(n=p_{1}^{alpha_{1}}p_{2}^{alpha_{2}}p_{3}^{alpha_{3}}···p_{k}^{alpha_{k}}) , 在 (n>1) 时,(kge 1).

对于任意约数(d=p_{1}^{eta_{1}}p_{2}^{eta_{2}}p_{3}^{eta_{3}}···p_{k}^{eta_{k}}) , (0leeta_{i}lealpha_{i}).

若存在 (eta_{i}ge 2) , 则有 (mu(d)=0).

那么,若要使 (mu(d))(S(n)) 产生影响 , 则需满足 (forall eta_{i}in[0,1])

故, (mu(d)) 的取值取决于 (eta_{i}=1) 的数量, 容易得到:

[S(n)=sum_{i=0}^{k}inom{k}{i}(-1)^i ]

由二项式定理可知:

[(a+b)^k=sum_{i=0}^{k}inom{k}{i}a^{i}b^{k-i} ]

(a=-1 , b=1) 代入得:

[0^k=sum_{i=0}^{k}inom{k}{i}(-1)^{i}=S(n) ]

证毕.

莫比乌斯反演

第一种形式

定义在正整数域的两个函数 (F(n))(f(n)) , 若 (F(n)=sum_{dmid n}^{}f(d)) ,

(f(n)=sum_{dmid n}{}mu (d)F(frac{n}{d})).

证明:

[egin{aligned} sum_{dmid n}{}mu (d)F(frac{n}{d})&=sum_{dmid n}{}mu (d)sum_{imid frac{n}{d}}{}f(i)\ &=sum_{imid n}{}f(i)sum_{dmid frac{n}{i}}{}mu (d)\ &=sum_{imid n}{}f(i)S(frac{n}{i}) 由上文可知,仅当i=n时S(frac{n}{i})=1,否则S(frac{n}{i})=0\ &= f(n) end{aligned}]

证毕.

第二种形式

(F(n)=sum_{n mid d}{}f(d)) , 则 (f(n)=sum_{nmid d}{} mu (frac{d}{n})F(d)).
证明:

[egin{aligned} sum_{nmid d}{} mu (frac{d}{n})F(d)&=sum_{nmid d}{}mu (frac{d}{n})sum_{dmid i}{}f(i)\ &=sum_{nmid i}{}sum_{d'mid frac{i}{n}}{}mu (d') 设d'=frac{d}{n}\ &= sum_{nmid i}{}S(frac{i}{n})\ &=f(n) end{aligned}]

证毕.

problem b

题解:设

[F(k)=sum_{x=1}^{a}sum_{y=1}^{b}left [ k mid (x,y) ight ]=lfloorfrac{a}{k} floorlfloorfrac{b}{k} floor f(k)=sum_{x=1}^{a}sum_{y=1}^{b}left [ k = (x,y) ight ]]

则有

[F(k)=sum_{kmid d}{}f(d) ]

由莫比乌斯反演定律可知:

[egin{aligned} f(k)&=sum_{kmid d}{}mu(frac{d}{k})F(d)\ &=sum_{kmid d}{}mu(frac{d}{k})lfloorfrac{a}{d} floorlfloorfrac{b}{d} floor\ &=sum_{d'}{}mu(d')lfloorfrac{a'}{d'} floorlfloorfrac{b'}{d'} floor 设d'=frac{d}{k},a'=frac{a}{k},b'=frac{b}{k}. end{aligned}]

等式右边 (lfloorfrac{a'}{d'} floorlfloorfrac{b'}{d'} floor) 可用整除分块计算。

#include<bits/stdc++.h>
#define N 100005
#define LL long long 
using namespace std;

int t;
LL a,b,c,d,k;

inline int qr()
{
    int x=0,w=1;char ch=0;
    while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
    return x*w;
}

int pri[N],vis[N],mobius[N],sum[N],tot;
void sieve(int x)
{
    mobius[1]=vis[1]=1;
    for(register int i=2;i<=x;i++)
    {
        if(!vis[i])
        {
            pri[++tot]=i;
            mobius[i]=-1;
        }
        for(register int j=1;j<=tot&&i*pri[j]<=x;j++)
        {
            vis[i*pri[j]]=1;
            if(!(i%pri[j]))
            {
                mobius[i*pri[j]]=0;
                break;
            }
            mobius[i*pri[j]]=-mobius[i];
        }
    }
    for(register int i=1;i<=x;i++)
        sum[i]=sum[i-1]+mobius[i];
}

inline LL f(int a,int b)
{
    LL res=0;
    a=a/k,b=b/k;
    int n=min(a,b);
    int l=1,r=0;
    while(l<=n)
    {
        r=min(n,min(a/(a/l),b/(b/l)));
        res+=(LL)(sum[r]-sum[l-1])*(a/l)*(b/l);
        l=r+1;
    }
    return res;
}

int main()
{
    //freopen("data.in","r",stdin);
    //freopen("data.out","w",stdout);
    sieve(50005);
    t=qr();
    while(t--)
    {
        a=qr();b=qr();c=qr();d=qr();k=qr();
        printf("%lld
",f(b,d)-f(a-1,d)-f(b,c-1)+f(a-1,c-1));
    }
    //system("pause");
    return 0;
}