数论神题——进击的羊角兽 数论神题

进击的羊角兽

题目描述:

(a+b|ab(a,b leq n,a eq b))的有序数对((a,b))的个数。

solution

((a,b)=d , (a < b leq n)),则$ a=xd , b=yd , ( x < y )$

(a+b|ab)

(=(x+y)d|xyd^2)

(ecause (x+y, x)=1,(x+y, y)=1)

( herefore (x+y)|d)

$ herefore x < y leq sqrt{n} $

(a=xz(x+y) , b=yz(x+y))

((x, y, z)( x < y leq sqrt{n}, z leq lfloor frac {n}{y(x+y)} floor))

$$Ans=sum_{x < y} sum_{(x, y)=1} lfloor frac {n}{y(x+y)} floor$$

$$=sum_{x < y} sum_{d=(x, y)}varepsilon(d) lfloor frac {n}{y(x+y)} floor$$

$$=sum_{x < y} sum_{d|(x,y)} mu(d) lfloor frac {n}{y(x+y)} floor$$

$$=sum_{x < y,d|x,d|y} mu(d) lfloor frac {n}{y(x+y)} floor$$

(x=x'd, y=y'd)

$$=sum_{x' < y'} mu(d) lfloor frac {n}{y'(x'+y')d^2} floor$$

(x',y' ext 用回 x,y ext 表示)

$$=sum_{x < y} mu(d) lfloor frac {n}{y(x+y)d^2} floor (d leq sqrt{n})$$

(varepsilon(), mu())

这个是莫比乌斯函数的性质。
数论神题——进击的羊角兽
数论神题

(lfloor frac {n}{y(x+y)} floor) 才会被算进去。

(mu(n))很容易就可以算出来,显然当(n=1)(mu(1)=1),对于一个数(n),它的所有约数的(mu())的和为(0),而(n)的其中一个约数就是(n),小于(n)(mu())又已经算出来了,就可以把(mu(n))算出来。

$$sum_{x < y} mu(d) lfloor frac {n}{y(x+y)d^2} floor (d leq sqrt{n})$$

$$f(t)=sum_{x < y} lfloor frac {t}{y(x+y)} floor$$

$$Ans=sum_{x < y} mu(d)f(frac {n}{d^2})$$

$$f(t)=sum_{x < y} lfloor frac {t}{y(x+y)} floor$$

$$=sum_{x < y, z leq lfloor frac {t}{y(x+y)} floor} 1$$

$$=sum_{x leq y-1, y(x+y) leq lfloor frac {t}{z} floor} 1$$

$$=sum_{x leq y-1, x leq lfloor frac {t}{zy} floor -y} 1$$

数论神题——进击的羊角兽
数论神题

[f(t)=sum h(lfloor frac {t}{z} floor) ]

终于都推完了。

答案记得乘2

分析一下时间复杂度。

(h(s)):因为最小值要比大于(0),所以(y leq sqrt {s}),而(s=lfloor frac {t}{z} floor=lfloor frac {n}{zd^2} floor),所以(s)最多有(2sqrt {n})个,时间复杂度为:

$$int_{0}^{sqrt {n}} (sqrt {x} + sqrt { frac {n}{x}} ) mathrm{d}x$$

(f(s)):分析同上,一个(f(s))需要(sqrt {s})的时间

(Ans):枚举(d)(sqrt {n}),算(f(s))需要(sqrt {s})的时间,总的时间复杂度为:

$$int_{0}^{sqrt {n}} (sqrt {x} + sqrt { frac {n}{x}} ) mathrm{d}x$$

(h(s)),所以整个算法的时间为:

$$int_{0}^{sqrt {n}} (sqrt {x} + sqrt { frac {n}{x}} ) mathrm{d}x$$

$$=frac {8}{3} n^{ frac {3}{4}}$$

贴代码:

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <vector>
#include <map>
#include <deque>
#include <queue>
using namespace std;

typedef long long LL;
const int maxn=int(1e6)+100;

LL n, ans;
int qn;
LL u[maxn], h[maxn], hv[maxn];

void getu()
{
	for (int i=1; i<=qn; ++i) u[i]=1;
	for (int i=2; i<=qn; ++i)
	{
		u[i]=-u[i];
		for (int j=2; i*j<=qn; ++j) u[i*j]+=u[i];
	}
}
LL geth1(LL num)
{
	int cut=(sqrt(1+8*num)+1)*0.25;
	int fi=(int)floor(sqrt(num));
	LL ret=LL(cut-1)*cut/2-(LL)(cut+1+fi)*(fi-cut)/2;
	for (int i=cut+1; i<=fi; ++i)
		ret+=num/i;
	return ret;
}
void geth()
{
	for (int i=1; i<=qn; ++i)
	{
		h[i]=geth1(i);
		hv[i]=geth1(n/i);			
	}
}
LL getf(LL num)
{
	LL f=0;
	int fi=(int)floor(sqrt(num));
	for (int i=1; i<=fi; ++i)
		f+=h[i]*(num/i-num/(i+1));
	for (int i=1; i<=fi; ++i)
	{
		if (num / i <= fi) continue;
		if (num/i>sqrt(n)) f+=hv[n/(num/i)];
		else f+=h[num/i];
	}
	/*
	if (LL(sqrt(num))*LL(sqrt(num))==num)
		f-=h[LL(sqrt(num))];
		*/
	return f;
}
void solve()
{
	getu();
	geth();
	for (int i=1; i<=qn; ++i)
		ans+=u[i]*getf(n/((long long)i*i));
}
int main()
{
	freopen("nixgnoygnay.in", "r", stdin);
	freopen("nixgnoygnay.out", "w", stdout);
	scanf("%I64d", &n);
	qn=(int)floor(sqrt(n));
	solve();
	printf("%I64d
", ans*2);
	return 0;
}