垃圾收集器与内存分配策略 判断对象的存活 垃圾回收算法 垃圾回收器列表 Stop The World现象 内存分配与回收策略 新生代配置 内存泄漏和内存溢出辨析

垃圾收集器与内存分配策略
判断对象的存活
垃圾回收算法
垃圾回收器列表
Stop The World现象
内存分配与回收策略
新生代配置
内存泄漏和内存溢出辨析

引用计数

快,方便,实现简单,缺点:对象相互引用时,很难判断对象是否改回收。

可达性分析

来判定对象是否存活的。这个算法的基本思路就是通过一系列的称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连时,则证明此对象是不可用的。

垃圾收集器与内存分配策略
判断对象的存活
垃圾回收算法
垃圾回收器列表
Stop The World现象
内存分配与回收策略
新生代配置
内存泄漏和内存溢出辨析

各种引用

强引用

一般的Object obj = new Object() ,就属于强引用。

软引用 SoftReference

一些有用但是并非必需,用软引用关联的对象,系统将要发生OOM之前,这些对象就会被回收。

弱引用 WeakReference

一些有用(程度比软引用更低)但是并非必需,用弱引用关联的对象,只能生存到下一次垃圾回收之前,GC发生时,不管内存够不够,都会被回收。

虚引用 PhantomReference

幽灵引用,最弱,被垃圾回收的时候收到一个通知。

垃圾回收算法

标记-清除算法(Mark-Sweep)

算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。

它的主要不足空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

垃圾收集器与内存分配策略
判断对象的存活
垃圾回收算法
垃圾回收器列表
Stop The World现象
内存分配与回收策略
新生代配置
内存泄漏和内存溢出辨析

复制算法(Copying)

将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为了原

来的一半。

垃圾收集器与内存分配策略
判断对象的存活
垃圾回收算法
垃圾回收器列表
Stop The World现象
内存分配与回收策略
新生代配置
内存泄漏和内存溢出辨析

标记-整理算法(Mark-Compact)

首先标记出所有需要回收的对象,在标记完成后,后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。

 垃圾收集器与内存分配策略
判断对象的存活
垃圾回收算法
垃圾回收器列表
Stop The World现象
内存分配与回收策略
新生代配置
内存泄漏和内存溢出辨析

 分代收集算法

当前商业虚拟机的垃圾收集都采用“分代收集”(Generational Collection)算法,这种算法并没有什么新的思想,只是根据对象存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。

专门研究表明,新生代中的对象98%是“朝生夕死”的,所以并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中一块Survivor[1]。当回收时,将Eden和Survivor中还存活着的对象一次性地复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8:1,也就是每次新生代中可用内存空间为整个新生代容量的90%(80%+10%),只有10%的内存会被“浪费”。当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。

在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记—清理”或者“标记—整理”算法来进行回收。

垃圾回收器列表

并行:垃圾收集的多线程的同时进行。

并发:垃圾收集的多线程和应用的多线程同时进行。

垃圾回收器工作示意图

垃圾收集器与内存分配策略
判断对象的存活
垃圾回收算法
垃圾回收器列表
Stop The World现象
内存分配与回收策略
新生代配置
内存泄漏和内存溢出辨析

Serial/Serial Old

最古老的,单线程,独占式,成熟,适合单CPU  服务器

-XX:+UseSerialGC 新生代和老年代都用串行收集器

-XX:+UseParNewGC 新生代使用ParNew,老年代使用Serial Old

-XX:+UseParallelGC 新生代使用ParallerGC,老年代使用Serial Old

ParNew

和Serial基本没区别,唯一的区别:多线程,多CPU的,停顿时间比Serial少

-XX:+UseParNewGC 新生代使用ParNew,老年代使用Serial Old

 垃圾收集器与内存分配策略
判断对象的存活
垃圾回收算法
垃圾回收器列表
Stop The World现象
内存分配与回收策略
新生代配置
内存泄漏和内存溢出辨析

Parallel Scavenge(ParallerGC)/Parallel Old

关注吞吐量的垃圾收集器,高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。

所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。

-XX:+ UseParallelOldGC:新生代使用ParallerGC,老年代使用Parallel Old

-XX:MaxGCPauseMills  :参数允许的值是一个大于0的毫秒数,收集器将尽可能地保证内存回收花费的

时间不超过设定值。不过大家不要认为如果把这个参数的值设置得稍小一点就能使得系统的垃圾收集速度变得更快,GC停顿时间缩短是以牺牲吞吐量和新生代空间来换取的:系统把新生代调小一些,收集300MB新生代肯定比收集500MB快吧,这也直接导致垃圾收集发生得更频繁一些,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。

-XX:GCTimeRatio参数的值应当是一个大于0且小于100的整数,也就是垃圾收集时间占总时间的比率,相当于是吞吐量的倒数。如果把此参数设置为19,那允许的最大GC时间就占总时间的5%(即1/(1+19)),默认值为99,就是允许最大1%(即1/(1+99))的垃圾收集时间。

-XX:+UseAdaptiveSizePolicy 当这个参数打开之后,就不需要手工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象年龄(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为GC自适应的调节策略。

如果对于收集器运作原来不太了解,手工优化存在困难的时候,使用Parallel Scavenge收集器配合自适。应调节策略,把内存管理的调优任务交给虚拟机去完成将是一个不错的选择。只需要把基本的内存数据设置好(如-Xmx设置最大堆),然后使用MaxGCPauseMillis参数(更关注最大停顿时间)或GCTimeRatio(更关注吞吐量)参数给虚拟机设立一个优化目标,那具体细节参数的调节工作就由虚拟机完成了。自适应调节策略也是Parallel Scavenge收集器与ParNew收集器的一个重要区别。

垃圾收集器与内存分配策略
判断对象的存活
垃圾回收算法
垃圾回收器列表
Stop The World现象
内存分配与回收策略
新生代配置
内存泄漏和内存溢出辨析

Concurrent Mark Sweep (CMS)

收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。

从名字(包含“Mark Sweep”)上就可以看出,CMS收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤,包括:

初始标记-短暂,仅仅只是标记一下GC Roots能直接关联到的对象,速度很快。

并发标记-和用户的应用程序同时进行,进行GC RootsTracing的过程

重新标记-短暂,为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。

并发清除

由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。

-XX:+UseConcMarkSweepGC ,表示新生代使用ParNew,老年代的用CMS

浮动垃圾:由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”。

同时用户的线程还在运行,需要给用户线程留下运行的内存空间。

-XX:CMSInitialOccupyFraction  ,因为以上两点,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。在JDK 早期版本的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在应用

中老年代增长不是太快,可以适当调高参数-XX:CMSInitiatingOccupancyFraction的值来提高触发百分比,以便降低内存回收次数从而获取更好的性能,在JDK 1.6中,CMS收集器的启动阈值已经提升至92%。要是CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure”失败,这时虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。所以说参数-XX:CMSInitiatingOccupancyFraction设置得太高很容易导致大量“Concurrent Mode Failure”失败,性能反而降低。

-XX:+UseCMSCompactAtFullCollection为了解决这个问题,CMS收集器提供了一个这个开关参数(默认就是开启的),用于在CMS收集器顶不住要进行FullGC时开启内存碎片的合并整理过程,内存整理的过程是无法并发的,空间碎片问题没有了,但停顿时间不得不变长。

-XX:CMSFullGCsBeforeCompaction,这个参数是用于设置执行多少次不压缩的Full GC后,跟着来一次带压缩的(默认值为0,表示每次进入FullGC时都进行碎片整理)。

垃圾收集器与内存分配策略
判断对象的存活
垃圾回收算法
垃圾回收器列表
Stop The World现象
内存分配与回收策略
新生代配置
内存泄漏和内存溢出辨析

G1

-XX:+UseG1GC

并行与并发:G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU(CPU或者CPU核心)来缩短Stop-The-World停顿的时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。

分代收集:与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果。

空间整合:与CMS的“标记—清理”算法不同,G1从整体来看是基于“标记—整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的,但无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。

内存布局:在G1之前的其他收集器进行收集的范围都是整个新生代或者老年代,而G1不再是这样。使用G1收集器时,Java堆的内存布局就与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。

垃圾收集器与内存分配策略
判断对象的存活
垃圾回收算法
垃圾回收器列表
Stop The World现象
内存分配与回收策略
新生代配置
内存泄漏和内存溢出辨析

n  新生代GC

回收Eden区和survivor区,回收后,所有eden区被清空,存在一个survivor区保存了部分数据。老年代区域会增多,因为部分新生代的对象会晋升到老年代。

n  并发标记周期

初始标记:短暂,仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,产生一个全局停顿,都伴随有一次新生代的GC。

根区域扫描:扫描survivor区可以直接到达的老年代区域。

并发标记阶段:扫描和查找整个堆的存活对象,并标记。

重新标记:会产生全局停顿,对并发标记阶段的结果进行修正。

独占清理:会产生全局停顿,对GC回收比例进行排序,供混合收集阶段使用

并发清理:识别并清理完全空闲的区域,并发进行

n  混合收集

对含有垃圾比例较高的Region进行回收。

G1当出现内存不足的的情况,也可能进行的FullGC回收。

G1中重要的参数:

-XX:MaxGCPauseMillis 指定目标的最大停顿时间,G1尝试调整新生代和老年代的比例,堆大小,晋升年龄来达到这个目标时间。

-XX:ParallerGCThreads:设置GC的工作线程数量。

垃圾收集器与内存分配策略
判断对象的存活
垃圾回收算法
垃圾回收器列表
Stop The World现象
内存分配与回收策略
新生代配置
内存泄漏和内存溢出辨析

 垃圾收集器对比分析

垃圾收集器与内存分配策略
判断对象的存活
垃圾回收算法
垃圾回收器列表
Stop The World现象
内存分配与回收策略
新生代配置
内存泄漏和内存溢出辨析

垃圾收集器与内存分配策略
判断对象的存活
垃圾回收算法
垃圾回收器列表
Stop The World现象
内存分配与回收策略
新生代配置
内存泄漏和内存溢出辨析

 

Stop The World现象

Java中Stop-The-World机制简称STW,是在执行垃圾收集算法时,Java应用程序的其他所有线程都被挂起(除了垃圾收集帮助器之外)。Java中一种全局暂停现象,全局停顿,所有Java代码停止,native代码可以执行,但不能与JVM交互;这些现象多半是由于gc引起

GC收集器和我们GC调优的目标就是尽可能的减少STW的时间和次数。

内存分配与回收策略

对象优先在Eden分配,如果说Eden内存空间不足,就会发生Minor GC

大对象直接进入老年代,大对象:需要大量连续内存空间的Java对象,比如很长的字符串和大型数组,1、导致内存有空间,还是需要提前进行垃圾回收获取连续空间来放他们,2、会进行大量的内存复制。

-XX:PretenureSizeThreshold 参数 ,大于这个数量直接在老年代分配,缺省为0 ,表示绝不会直接分配在老年代。

长期存活的对象将进入老年代,默认15岁,-XX:MaxTenuringThreshold调整

动态对象年龄判定,为了能更好地适应不同程序的内存状况,虚拟机并不是永远地要求对象的年龄必须达到了MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到MaxTenuringThreshold中要求的年龄

空间分配担保:新生代中有大量的对象存活,survivor空间不够,当出现大量对象在MinorGC后仍然存活的情况(最极端的情况就是内存回收后新生代中所有对象都存活),就需要老年代进行分配担保,把Survivor无法容纳的对象直接进入老年代.只要老年代的连续空间大于新生代对象的总大小或者历次晋升的平均大小,就进行Minor GC,否则FullGC。

垃圾收集器与内存分配策略
判断对象的存活
垃圾回收算法
垃圾回收器列表
Stop The World现象
内存分配与回收策略
新生代配置
内存泄漏和内存溢出辨析

新生代配置

新生代大小配置参数的优先级:

高:-XX:NewSize/MaxNewSize

中间 -Xmn (NewSize= MaxNewSize)

低:-XX:NewRatio  表示比例,例如=2,表示 新生代:老年代 = 1:2

-XX:SurvivorRatio 表示Eden和Survivor的比值,

缺省为8 表示 Eden:FromSurvivor:ToSurvivor= 8:1:1

new10个1M数组,-Xms20M -Xmx20M设置java队最大最小内存为20M,–Xmn2m设置新生代内存2M

-Xms20M -Xmx20M -XX:+PrintGCDetails –Xmn2m -XX:SurvivorRatio=2

没有垃圾回收

数组都在老年代

-Xms20M -Xmx20M -XX:+PrintGCDetails -Xmn7m -XX:SurvivorRatio=2

发生了垃圾回收

新生代存了部分数组,老年代也保存了部分数组,发生了晋升现象

-Xms20M -Xmx20M -XX:+PrintGCDetails -Xmn15m -XX:SurvivorRatio=8

新生代可以放下所有的数组

老年代没放

-Xms20M -Xmx20M -XX:+PrintGCDetails -XX:NewRatio=2

发生了垃圾回收

出现了空间分配担保,而且发生了FullGC

内存泄漏和内存溢出辨析

内存溢出:实实在在的内存空间不足导致;

内存泄漏:该释放的对象没有释放,多见于自己使用容器保存元素的情况下。