P1587 [NOI2016]循环之美 杜教筛

P1587 [NOI2016]循环之美

题目大意:

​ 给定n,m,k。求(K)进制下既约分数(displaystyle frac{x}{y}(1leq xleq n, 1leq yleq m))且为纯循环小数的个数。

题解:

首先是判断分数(displaystyle frac{x}{y})是否为纯循环小数的方法,

根据打表可以得到结论:

(K)进制下,(displaystyle frac{x}{y})为纯循环小数当且仅当(y)(k)互质。

证明:

(K)进制下,(displaystyle frac{x}{y})为纯循环小数,则有

[x*k^lequiv x(mod y)(l eq 0) ]

两边同除(x).

[k^lequiv1(mod y) ]

(k, y)互质。

证毕。

题目转化为求

[displaystyle sum_{x=1}^{n} displaystyle sum_{y=1}^{m}[gcd(x, y)==1][gcd(y, k)==1] ]

[displaystyle sum_{x=1}^{n} displaystyle sum_{y=1}^{m}[gcd(y, k)==1][gcd(x, y)==1] ]

更换枚举顺序

[displaystyle sum_{y=1}^{m}[gcd(y, k)==1]displaystyle sum_{x=1}^{n} [gcd(x, y)==1] ]

莫比乌斯反演得

[displaystyle sum_{y=1}^{m}[gcd(y, k)==1]displaystyle sum_{x=1}^{n} displaystyle sum_{d|gcd(x, y)}mu(d) ]

枚举约数(d)

[displaystyle sum_{d=1}^{n}mu(d) displaystyle sum_{d|x}^{n} displaystyle sum_{d|y}^{m}[gcd(y,k)==1] ]

[displaystyle sum_{d=1}^{n}[gcd(d,k)==1]mu(d) displaystyle sum_{x=1}^{displaystyle displaystyle lfloorfrac{n}{d}displaystyle floor} displaystyle sum_{y=1}^{displaystyle displaystyle lfloor frac{m}{d}displaystyle floor}[gcd(y,k)==1] ]

[displaystyle sum_{d=1}^{n}[gcd(d,k)==1]mu(d) displaystyle displaystyle lfloor frac{n}{d} displaystyle floor displaystyle sum_{y=1}^{displaystyle displaystyle lfloor frac{m}{d}displaystyle floor}[gcd(y,k)==1] ]

(f(x)=displaystyle sum_{i=1}^{x}[gcd(i,k)==1],s(x,k)=displaystyle sum_{i=1}^{x}[gcd(i,k)==1]mu(i)).

考虑求(f(x)),若(i)(k)互质,则有(i+k)(k)互质。

所以

[f(x)=displaystyle lfloordisplaystylefrac{x}{k}displaystyle floor f(k) + f(x mbox{%} k) ]

预处理(f(x))满足(1leq xleq k)(f(x)),剩下的递归处理即可。

考虑求(s(x, k)).

[s(x,k)=sum_{i=1}^{x}[gcd(i,k)==1]mu(i)\=sum_{i=1}^{x}mu(i)[gcd(i,k)==1]\=sum_{i=1}^{x}mu(i)sum_{d|gcd(i,k)}mu(d)\=sum_{i=1}^{x}mu(i)sum_{d|i,d|k}mu(d)\=sum_{d|k}mu(d)sum_{d|i}mu(i)\=sum_{d|k}mu(d)sum_{i=1}^{lfloorfrac{x}{d} floor}mu(i*d) ]

(gcd(i,d) eq 1)时,(mu(i*d)=0),对答案没有贡献.

由积性函数的性质(f(ab)=f(a)*f(b))

[=sum_{d|k}mu(d)sum_{i=1}^{lfloor frac{x}{d} floor}[gcd(i,d)==1]mu(i)mu(d)\=sum_{d|k}mu(d)^2sum_{i=1}^{lfloor frac{x}{d} floor}[gcd(i,d)==1]mu(i)\=sum_{d|k}mu(d)^2sum_{i=1}^{lfloor frac{x}{d} floor}[gcd(i,d)==1]mu(i)\=sum_{d|k}mu(d)^2*s(lfloor frac{x}{d} floor,d) ]

递归处理即可。

但当(k=1)时,(s(x,k))的值无法通过递归得出。

考虑(k=1)的情况,

[s(x,1)=sum_{i=1}^{x}[gcd(i,1)==1]mu(i)\=sum_{i=1}^{x}mu(i) ]

由于(1leq xleq 1e8),杜教筛求前缀和即可。

题目中所求的

[ans=displaystyle sum_{d=1}^{n}[gcd(d,k)==1]mu(d) displaystyle displaystyle lfloor frac{n}{d} displaystyle floor displaystyle sum_{y=1}^{displaystyle displaystyle lfloor frac{m}{d}displaystyle floor}[gcd(y,k)==1] ]

数论分块处理。

code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <algorithm>
#define int long long
using namespace std;
const int N = 1e6 + 5;
int read() {
	int x = 0, f = 1; char ch;
	while(! isdigit(ch = getchar())) (ch == '-') && (f = -f);
	for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 3) + (x << 1) + (ch ^ 48));
	return x * f;
}
map <pair <int, int>, int> mp;
int n, m, K, ans;
int tot, gcd_k[N], f[N], mu[N], Smu[N], vis[N], pri[N];
void init() {
	for(int i = 1; i <= K; ++ i) gcd_k[i] = __gcd(i, K) == 1;
	for(int i = 1; i <= K; ++ i) f[i] = f[i - 1] + gcd_k[i];
	mu[1] = 1;
	for(int i = 2; i < N; ++ i) {
		if(! vis[i]) pri[++ tot] = i, mu[i] = -1;
		for(int j = 1; j <= tot && i * pri[j] < N; ++ j) {
			vis[i * pri[j]] = 1;
			if(i % pri[j] == 0) break;
			mu[i * pri[j]] = - mu[i];
		}
	}
	for(int i = 1; i < N; ++ i) Smu[i] = Smu[i - 1] + mu[i];
}
int Sf(int x) {
	return (x / K) * f[K] + f[x % K];
}
int Ss(int x, int k){
	if((k == 1 && x <= N) || x == 0) return Smu[x];
	if(mp[make_pair(x, k)]) return mp[make_pair(x, k)];
	int res = 0;
	if(k == 1) {
		res = 1;
		for(int i = 2, j; i <= x; i = j + 1) {
			j = x / (x / i);
			res -= (j - i + 1) * Ss(x / i, k);
		}
	}
	else {
		for(int i = 1; i * i <= k; ++ i) {
			if(k % i) continue;
			if(mu[i]) res += Ss(x / i, i);
			if(i * i != k && mu[k / i]) {
				res += Ss(x / (k / i), k / i);
			}
		}
	}
	return mp[make_pair(x, k)] = res;
}
signed main() {
	n = read(); m = read(); K = read();
	init();
	for(int i = 1, j, nw = 0, lst = 0; i <= min(n, m); i = j + 1) {
		j = min(n / (n / i), m / (m / i));
		nw = Ss(j, K);
		ans = ans + (nw - lst) * (n / i) * Sf(m / i);
		lst = nw;
	}
	printf("%lld
", ans);
	return 0;
}