bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

bzoj 2111: [ZJOI2010]Perm 排列计数

1 ≤ N ≤ 10^6, P≤ 10^9

题意:求1~N的排列有多少种小根堆

   1: #include<cstdio>
namespace std;
int N = 1e6+5;
long LL;
   5: LL m, p, T, x, y, F[N];
   6: LL n, size[N<<1];
   7: LL f[N];
   8: LL inv(LL t, LL p) {
return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p;
  10: }
  11: LL C(LL n, LL m){
return 0;
if(n < p && m < p)
return F[n] * 1ll * inv(F[n-m]%p, p) % p * inv(F[m]%p, p) % p;
return C(n/p, m/p) * C(n%p, m%p) %p;
  16: }
int main(){
int i;
, &n, &p);
  20:     F[0] = 1;
//阶乘预处理
for(i = n; i; i--) {
  23:         size[i] = size[i<<1] + size[i<<1|1] + 1;
  24:         f[i] = C(size[i]-1, size[i<<1])*((i<<1)>n?1:f[i<<1])%p*((i<<1|1)>n?1:f[i<<1|1])%p;
  25:     }
, f[1]);
  27: }