1、开始
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable
继承了抽象类AbstractMap,实现了Map接口,Cloneable接口(可克隆),Serializable接口(可序列化)
2、属性
//默认初始化容量为16,容量必须是2的n次幂
static final int DEFAULT_INITIAL_CAPACITY = 16;
//最大容量为2的20次幂,再大就是Integer.MAX_VALUE
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认加载因子为0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//Entry数组,其就是链表散列的数据结构,即数组+链表
transient Entry<K,V>[] table;
//已存储元素的数量
transient int size;
//扩容的临界值,只要存储元素的数量大于该临界值,就会自动扩容,其中threshold=capacity*load_factor
int threshold;
//加载因子
final float loadFactor;
//更改次数
transient int modCount;
3、存储数据结构Entry
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;
int hash;
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
public final K getKey() {
return key;
}
public final V getValue() {
return value;
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
public final int hashCode() {
return (key==null ? 0 : key.hashCode()) ^
(value==null ? 0 : value.hashCode());
}
public final String toString() {
return getKey() + "=" + getValue();
}
//当向HashMap添加元素时调用该方法
void recordAccess(HashMap<K,V> m) {
}
//当从HashMap中删除元素时调用该方法
void recordRemoval(HashMap<K,V> m) {
}
}
4、构造器
public HashMap(int initialCapacity, float loadFactor) {
//校验容量大小
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
//初始化容量大小的最大值
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//校验加载因子
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
//获取容量大小,使之是2的n次幂
// Find a power of 2 >= initialCapacity
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
//赋值
//加载因子
this.loadFactor = loadFactor;
//扩容的临界值
threshold = (int)Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
//存储元素的数组
table = new Entry[capacity];
//用于元素计算Hash值,定位元素在数组中的位置
useAltHashing = sun.misc.VM.isBooted() && (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
//初始化时的一些其他操作
init();
}
//指定初始容量
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//使用默认容量和默认加载因子
public HashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
//使用现有元素,和默认加载因子
public HashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
putAllForCreate(m);
}
5、添加
public V put(K key, V value) {
//当key为null时,存储在数组的第0个位置
if (key == null)
return putForNullKey(value);
//计算HashCode值
int hash = hash(key);
//定位在数组中的位置,即确定该元素所在的链表
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
//对比hash值以及Key是否相等
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
//如果存在,则将旧值替换为新值
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
//返回旧值
return oldValue;
}
}
//更改次数
modCount++;
//在当前数组的i位置的链表中新增一节点
addEntry(hash, key, value, i);
return null;
}
private V putForNullKey(V value) {
//key为null,其必在HashMap的第0个数组中
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
//当已存在,则替换
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
//新增,hash=0,bucketIndex=0
addEntry(0, null, value, 0);
return null;
}
void addEntry(int hash, K key, V value, int bucketIndex) {
//当前元素数量已经达到扩容临界点,则进行扩容
if ((size >= threshold) && (null != table[bucketIndex])) {
//扩容,为原来的2倍
resize(2 * table.length);
//重新计算当前key的hash值,
hash = (null != key) ? hash(key) : 0;
//以及在数组中的位置
bucketIndex = indexFor(hash, table.length);
}
//为链表添加一新节点
createEntry(hash, key, value, bucketIndex);
}
void createEntry(int hash, K key, V value, int bucketIndex) {
//使用前插法,即新插入的元素必定在链表的头部
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
//元素数量加1
size++;
}
void resize(int newCapacity) {
//获取当前数组的引用,作为本地变量
Entry[] oldTable = table;
//老的数组的长度
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
//当前数组容量已经是最大时,则不需要进行扩容
threshold = Integer.MAX_VALUE;
return;
}
//创建新的数组
Entry[] newTable = new Entry[newCapacity];
boolean oldAltHashing = useAltHashing;
useAltHashing |= sun.misc.VM.isBooted() &&
(newCapacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
//是否进行hash值重算
boolean rehash = oldAltHashing ^ useAltHashing;
//数组元素迁移到新数组中
transfer(newTable, rehash);
//最后将新数组引用赋给HashMap
table = newTable;
//重新计算扩容临界值
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
void transfer(Entry[] newTable, boolean rehash) {
//新数组长度
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
//遍历数组中的每一个元素,即每一个链表
while(null != e) {
//将每一个链表迁移到新数组中
//记录当前节点的下一个节点,用于下次迁移
Entry<K,V> next = e.next;
if (rehash) {
//是否对当前节点的hash重计算
e.hash = null == e.key ? 0 : hash(e.key);
}
//重新定位该元素在新数组中的位置
int i = indexFor(e.hash, newCapacity);
//将新数组中该位置的链表元素都放在该元素后面,使用的是前插法
e.next = newTable[i];
//将链表挂在新数组中
newTable[i] = e;
//继续下一个节点的迁移
e = next;
}
}
}
6、删除
public V remove(Object key) {
//获取需要删除的key对应的元素
Entry<K,V> e = removeEntryForKey(key);
//返回该元素上的值
return (e == null ? null : e.value);
}
final Entry<K,V> removeEntryForKey(Object key) {
//计算该key的hash
int hash = (key == null) ? 0 : hash(key);
//定位该key的在数组中的位置
int i = indexFor(hash, table.length);
//找到链表的第一个节点
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;
//遍历链表
while (e != null) {
//当前节点的下一个节点,也是下一次遍历所需要的节点
Entry<K,V> next = e.next;
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
//若当前节点是所要删除的节点,即hash相等和key也相等
//更改次数
modCount++;
//元素数量减1
size--;
if (prev == e)
//当要删除的节点是链表的头结点时,则只需要将当前节点的下一个节点作为该链表的头结点,即可
table[i] = next;
else
//当删除的节点不是链表的头结点时,则只需要当前节点的前一个节点的下一个是当前节点的下一个节点,即可
prev.next = next;
//删除记录
e.recordRemoval(this);
//返回删除的节点
return e;
}
prev = e;
e = next;
}
//返回要删除的节点
return e;
}
7、访问和查找
//根据key查找元素
public V get(Object key) {
if (key == null)
//当key为null时,从数组的第0个位置查找
return getForNullKey();
//根据key查找
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
private V getForNullKey() {
//从数组的第0个位置的链表头部开始查找
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
//当存在一个key为null的节点时
if (e.key == null)
//返回该节点中的值
return e.value;
}
return null;
}
//是否包含键
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
final Entry<K,V> getEntry(Object key) {
//计算该key对应的hash
int hash = (key == null) ? 0 : hash(key);
//定位在数组中的位置,即找到某张链表,之后从该链表的头部开始遍历
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
//当hash相等,key也想等时,返回该节点
return e;
}
return null;
}
//是否包含值
public boolean containsValue(Object value) {
if (value == null)
//当值为null时
return containsNullValue();
Entry[] tab = table;
//遍历当前数组,以及每一个链表
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (value.equals(e.value))
return true;
return false;
}
private boolean containsNullValue() {
//值为null
Entry[] tab = table;
//遍历当前数组,以及每一个链表
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (e.value == null)
return true;
return false;
}
8、迭代器
//用于HashMap的迭代器抽象类
private abstract class HashIterator<E> implements Iterator<E> {
Entry<K,V> next; // next entry to return
int expectedModCount; // For fast-fail
int index; // current slot
Entry<K,V> current; // current entry
HashIterator() {
expectedModCount = modCount;
if (size > 0) { // advance to first entry
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
}
public final boolean hasNext() {
return next != null;
}
final Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();
if ((next = e.next) == null) {
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
current = e;
return e;
}
public void remove() {
if (current == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Object k = current.key;
current = null;
HashMap.this.removeEntryForKey(k);
expectedModCount = modCount;
}
}
//值迭代器类
private final class ValueIterator extends HashIterator<V> {
public V next() {
return nextEntry().value;
}
}
//键迭代器类
private final class KeyIterator extends HashIterator<K> {
public K next() {
return nextEntry().getKey();
}
}
//Entry迭代器类
private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
public Map.Entry<K,V> next() {
return nextEntry();
}
}
//获取键迭代器对象
// Subclass overrides these to alter behavior of views' iterator() method
Iterator<K> newKeyIterator() {
return new KeyIterator();
}
//获取值迭代器对象
Iterator<V> newValueIterator() {
return new ValueIterator();
}
//获取Entry迭代器类对象
Iterator<Map.Entry<K,V>> newEntryIterator() {
return new EntryIterator();
}
private transient Set<Map.Entry<K,V>> entrySet = null;
transient volatile Set<K> keySet = null;
transient volatile Collection<V> values = null;
//获取HashMap中的所有键对Set
public Set<K> keySet() {
Set<K> ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}
private final class KeySet extends AbstractSet<K> {
//获取迭代器
public Iterator<K> iterator() {
return newKeyIterator();
}
//Set大小
public int size() {
return size;
}
//是否包含
public boolean contains(Object o) {
return containsKey(o);
}
//删除元素
public boolean remove(Object o) {
return HashMap.this.removeEntryForKey(o) != null;
}
//清空
public void clear() {
HashMap.this.clear();
}
}
//获取HashMap中的所有值对Collection
public Collection<V> values() {
Collection<V> vs = values;
return (vs != null ? vs : (values = new Values()));
}
private final class Values extends AbstractCollection<V> {
//获取迭代器
public Iterator<V> iterator() {
return newValueIterator();
}
//Collection大小
public int size() {
return size;
}
//是否包含
public boolean contains(Object o) {
return containsValue(o);
}
//清空
public void clear() {
HashMap.this.clear();
}
}
//获取HashMap中的所有键值对Set
public Set<Map.Entry<K,V>> entrySet() {
return entrySet0();
}
private Set<Map.Entry<K,V>> entrySet0() {
Set<Map.Entry<K,V>> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}
private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
//获取迭代器
public Iterator<Map.Entry<K,V>> iterator() {
return newEntryIterator();
}
//是否包含
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<K,V> e = (Map.Entry<K,V>) o;
Entry<K,V> candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
//删除元素
public boolean remove(Object o) {
return removeMapping(o) != null;
}
//Set大小
public int size() {
return size;
}
//清空
public void clear() {
HashMap.this.clear();
}
}
9、清空所有元素
public void clear() {
modCount++;
Entry[] tab = table;
for (int i = 0; i < tab.length; i++)
tab[i] = null;
size = 0;
}
参考资料:
http://www.cnblogs.com/tstd/p/5055286.html
http://tengj.top/2016/04/15/javajh3hashmap/