反向传播算法(进程及公式推导)

反向传播算法(过程及公式推导)
        反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。其主要思想是:
(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;
(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;
(3)在反向传播的过程中,根据误差调整各种参数的值,直至收敛。

        反向传播算法的思想比较容易理解,但是具体的公式则要一步步推导,因此本文着重介绍公式的推导过程。


1. 变量定义
反向传播算法(进程及公式推导)

        上图是一个三层人工神经网络,layer1至layer3分别是输入层、隐藏层和输出层。如图,先定义一些变量:
        反向传播算法(进程及公式推导)表示第反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)层的第反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)个神经元连接到第反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)层的第反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)个神经元的权重;
反向传播算法(进程及公式推导)        反向传播算法(进程及公式推导)表示第反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)层的第反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)个神经元的偏置;
        反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)表示第反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)层的第反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)个神经元的输入,即反向传播算法(进程及公式推导)
反向传播算法(进程及公式推导)
        反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)表示第反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)层的第反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)个神经元的输出,即反向传播算法(进程及公式推导)
反向传播算法(进程及公式推导)
        其中反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)表示激活函数。

2. 损失函数
        损失函数用来计算ANN输出值与实际值之间的误差代价,常用的损失函数是二次损失函数(Quadratic cost function):
反向传播算法(进程及公式推导)
反向传播算法(进程及公式推导)
        其中,反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)表示输入的样本,反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)表示实际的分类,反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)表示预测的输出,反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)表示神经网络的最大层数。

3. 公式及其推导
        本节将介绍反向传播算法用到的4个公式,并进行推导。如果不想了解公式推导过程,请直接看第4节的算法步骤。
        首先,将第反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)层第反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)个神经元中产生的错误(即实际值与预测值之间的误差)定义为:
反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)


        本文将以一个输入样本为例进行说明,此时损失函数表示为:
反向传播算法(进程及公式推导)
反向传播算法(进程及公式推导)

公式1(计算最后一层神经网络产生的错误):

反向传播算法(进程及公式推导)

        其中,反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)表示Hadamard乘积,用于矩阵或向量之间点对点的乘法运算。公式1的推导过程如下:
反向传播算法(进程及公式推导)


公式2(由后往前,计算每一层神经网络产生的错误):

反向传播算法(进程及公式推导)

        推导过程:
反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)


公式3(计算权重的梯度):

反向传播算法(进程及公式推导)

        推导过程:
反向传播算法(进程及公式推导)


公式4(计算偏置的梯度):

反向传播算法(进程及公式推导)

        推导过程:
反向传播算法(进程及公式推导)


4. 反向传播算法伪代码

  • 输入训练集

  • 对于训练集中的每个样本x,设置输入层(Input layer)对应的激活值反向传播算法(进程及公式推导)反向传播算法(进程及公式推导)
    • 前向传播:
反向传播算法(进程及公式推导), 反向传播算法(进程及公式推导)
    • 计算输出层产生的错误:
反向传播算法(进程及公式推导)
    • 反向传播错误:反向传播算法(进程及公式推导)
反向传播算法(进程及公式推导)

  • 使用梯度下降(gradient descent),训练参数:

 反向传播算法(进程及公式推导)

反向传播算法(进程及公式推导)