Spark源码翻阅笔记之Broadcast(三)
Spark源码阅读笔记之Broadcast(三)
Broadcast的Torrent传输机制是通过TorrentBroadcastFactory和TorrentBroadcast来实现的。
由于Torrent机制对于Broadcast实际的存储和传输都是通过BlockManager来实现的,因此TorrentBroadcastFactory的代码比较简单,initialize和stop都没有做任何事情,newBroadcast新建了一个TorrentBroadcast,unbroadcast函数则调用BlockManager的removeBroadcast清除在各个Executor上存储的该Broadcast。
TorrentBroadcastFactory代码
class TorrentBroadcastFactory extends BroadcastFactory {
override def initialize(isDriver: Boolean, conf: SparkConf, securityMgr: SecurityManager) { }
override def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean, id: Long) = {
new TorrentBroadcast[T](value_, id)
}
override def stop() { }
/**
* Remove all persisted state associated with the torrent broadcast with the given ID.
* @param removeFromDriver Whether to remove state from the driver.
* @param blocking Whether to block until unbroadcasted
*/
override def unbroadcast(id: Long, removeFromDriver: Boolean, blocking: Boolean) {
TorrentBroadcast.unpersist(id, removeFromDriver, blocking)
}
}
分析TorrentBroadcast时需要注意两点:1、缓存机制;2、序列化和反序列化机制。先来看TorrentBroadcast的代码:
private[spark] class TorrentBroadcast[T: ClassTag](obj: T, id: Long)
extends Broadcast[T](id) with Logging with Serializable {
/**
* Value of the broadcast object on executors. This is reconstructed by [[readBroadcastBlock]],
* which builds this value by reading blocks from the driver and/or other executors.
*
* On the driver, if the value is required, it is read lazily from the block manager.
*/
@transient private lazy val _value: T = readBroadcastBlock()
/** The compression codec to use, or None if compression is disabled */
@transient private var compressionCodec: Option[CompressionCodec] = _
/** Size of each block. Default value is 4MB. This value is only read by the broadcaster. */
@transient private var blockSize: Int = _
private def setConf(conf: SparkConf) {
compressionCodec = if (conf.getBoolean("spark.broadcast.compress", true)) {
Some(CompressionCodec.createCodec(conf))
} else {
None
}
blockSize = conf.getInt("spark.broadcast.blockSize", 4096) * 1024
}
setConf(SparkEnv.get.conf)
private val broadcastId = BroadcastBlockId(id)
/** Total number of blocks this broadcast variable contains. */
private val numBlocks: Int = writeBlocks(obj)
override protected def getValue() = {
_value
}
/**
* Divide the object into multiple blocks and put those blocks in the block manager.
* @param value the object to divide
* @return number of blocks this broadcast variable is divided into
*/
private def writeBlocks(value: T): Int = {
// Store a copy of the broadcast variable in the driver so that tasks run on the driver
// do not create a duplicate copy of the broadcast variable's value.
SparkEnv.get.blockManager.putSingle(broadcastId, value, StorageLevel.MEMORY_AND_DISK,
tellMaster = false)
val blocks =
TorrentBroadcast.blockifyObject(value, blockSize, SparkEnv.get.serializer, compressionCodec)
blocks.zipWithIndex.foreach { case (block, i) =>
SparkEnv.get.blockManager.putBytes(
BroadcastBlockId(id, "piece" + i),
block,
StorageLevel.MEMORY_AND_DISK_SER,
tellMaster = true)
}
blocks.length
}
/** Fetch torrent blocks from the driver and/or other executors. */
private def readBlocks(): Array[ByteBuffer] = {
// Fetch chunks of data. Note that all these chunks are stored in the BlockManager and reported
// to the driver, so other executors can pull these chunks from this executor as well.
val blocks = new Array[ByteBuffer](numBlocks)
val bm = SparkEnv.get.blockManager
for (pid <- Random.shuffle(Seq.range(0, numBlocks))) {
val pieceId = BroadcastBlockId(id, "piece" + pid)
logDebug(s"Reading piece $pieceId of $broadcastId")
// First try getLocalBytes because there is a chance that previous attempts to fetch the
// broadcast blocks have already fetched some of the blocks. In that case, some blocks
// would be available locally (on this executor).
def getLocal: Option[ByteBuffer] = bm.getLocalBytes(pieceId)
def getRemote: Option[ByteBuffer] = bm.getRemoteBytes(pieceId).map { block =>
// If we found the block from remote executors/driver's BlockManager, put the block
// in this executor's BlockManager.
SparkEnv.get.blockManager.putBytes(
pieceId,
block,
StorageLevel.MEMORY_AND_DISK_SER,
tellMaster = true)
block
}
val block: ByteBuffer = getLocal.orElse(getRemote).getOrElse(
throw new SparkException(s"Failed to get $pieceId of $broadcastId"))
blocks(pid) = block
}
blocks
}
/**
* Remove all persisted state associated with this Torrent broadcast on the executors.
*/
override protected def doUnpersist(blocking: Boolean) {
TorrentBroadcast.unpersist(id, removeFromDriver = false, blocking)
}
/**
* Remove all persisted state associated with this Torrent broadcast on the executors
* and driver.
*/
override protected def doDestroy(blocking: Boolean) {
TorrentBroadcast.unpersist(id, removeFromDriver = true, blocking)
}
/** Used by the JVM when serializing this object. */
private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException {
assertValid()
out.defaultWriteObject()
}
private def readBroadcastBlock(): T = Utils.tryOrIOException {
TorrentBroadcast.synchronized {
setConf(SparkEnv.get.conf)
SparkEnv.get.blockManager.getLocal(broadcastId).map(_.data.next()) match {
case Some(x) =>
x.asInstanceOf[T]
case None =>
logInfo("Started reading broadcast variable " + id)
val startTimeMs = System.currentTimeMillis()
val blocks = readBlocks()
logInfo("Reading broadcast variable " + id + " took" + Utils.getUsedTimeMs(startTimeMs))
val obj = TorrentBroadcast.unBlockifyObject[T](
blocks, SparkEnv.get.serializer, compressionCodec)
// Store the merged copy in BlockManager so other tasks on this executor don't
// need to re-fetch it.
SparkEnv.get.blockManager.putSingle(
broadcastId, obj, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
obj
}
}
}
}
TorrentBroadcast初始化时会调用writeBlocks函数,该函数先调用TorrentBroadcast.blockifyObject函数将Broadcast分片,然后对于每个分片以BroadcastBlockId(id, “piece” + i)为BlockId存储到BlockManager中。
TorrentBroadcast.blockifyObject函数根据配置(spark.broadcast.blockSize,默认为4M)将Broadcast分片,然后返回Array[ByteBuffer],代码:
def blockifyObject[T: ClassTag](
obj: T,
blockSize: Int,
serializer: Serializer,
compressionCodec: Option[CompressionCodec]): Array[ByteBuffer] = {
val bos = new ByteArrayChunkOutputStream(blockSize)
val out: OutputStream = compressionCodec.map(c => c.compressedOutputStream(bos)).getOrElse(bos)
val ser = serializer.newInstance()
val serOut = ser.serializeStream(out)
serOut.writeObject[T](obj).close()
bos.toArrays.map(ByteBuffer.wrap)
}
TorrentBroadcast的缓存机制和HttpBroadcast一样,但是序列化机制区别比较大。TorrentBroadcast序列化时不会序列化需要传输的value,而是序列化该Broadcast的Id,在反序列时仍然也只会反序列化Broadcast的Id。它通过一个lazy的变量(_value)来进行延迟初始化Broadcast实际的值,当在Executor中需要使用Broadcast中的值时,_value被初始化,_value初始化通过readBroadcastBlock函数来实现,该函数先尝试从BlockManager中读取缓存着的Broadcast,若没有则调用readBlocks函数从其他的Executor中读取该Broadcast所有的分片,然后调用TorrentBroadcast.unBlockifyObject函数将分片组装成最终的值。
readBroadcastBlock函数代码
private def readBroadcastBlock(): T = Utils.tryOrIOException {
TorrentBroadcast.synchronized {
setConf(SparkEnv.get.conf)
SparkEnv.get.blockManager.getLocal(broadcastId).map(_.data.next()) match {
case Some(x) =>
x.asInstanceOf[T]
case None =>
logInfo("Started reading broadcast variable " + id)
val startTimeMs = System.currentTimeMillis()
val blocks = readBlocks()
logInfo("Reading broadcast variable " + id + " took" + Utils.getUsedTimeMs(startTimeMs))
val obj = TorrentBroadcast.unBlockifyObject[T](
blocks, SparkEnv.get.serializer, compressionCodec)
// Store the merged copy in BlockManager so other tasks on this executor don't
// need to re-fetch it.
SparkEnv.get.blockManager.putSingle(
broadcastId, obj, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
obj
}
}
}
readBlocks函数以随机洗牌的顺序从其他Executor中读取Broadcast的所有分片,并且在每读取到一个分片时存储到BlockManager中以供其他的Executor读取,因此实现了类似BitTorrent的传输机制。
readBlocks函数代码:
/** Fetch torrent blocks from the driver and/or other executors. */
private def readBlocks(): Array[ByteBuffer] = {
// Fetch chunks of data. Note that all these chunks are stored in the BlockManager and reported
// to the driver, so other executors can pull these chunks from this executor as well.
val blocks = new Array[ByteBuffer](numBlocks)
val bm = SparkEnv.get.blockManager
for (pid <- Random.shuffle(Seq.range(0, numBlocks))) {
val pieceId = BroadcastBlockId(id, "piece" + pid)
logDebug(s"Reading piece $pieceId of $broadcastId")
// First try getLocalBytes because there is a chance that previous attempts to fetch the
// broadcast blocks have already fetched some of the blocks. In that case, some blocks
// would be available locally (on this executor).
def getLocal: Option[ByteBuffer] = bm.getLocalBytes(pieceId)
def getRemote: Option[ByteBuffer] = bm.getRemoteBytes(pieceId).map { block =>
// If we found the block from remote executors/driver's BlockManager, put the block
// in this executor's BlockManager.
SparkEnv.get.blockManager.putBytes(
pieceId,
block,
StorageLevel.MEMORY_AND_DISK_SER,
tellMaster = true)
block
}
val block: ByteBuffer = getLocal.orElse(getRemote).getOrElse(
throw new SparkException(s"Failed to get $pieceId of $broadcastId"))
blocks(pid) = block
}
blocks
}
TorrentBroadcast.unBlockifyObject将得到的Broadcast的分片进行组装,得到最终的value。代码:
def unBlockifyObject[T: ClassTag](
blocks: Array[ByteBuffer],
serializer: Serializer,
compressionCodec: Option[CompressionCodec]): T = {
require(blocks.nonEmpty, "Cannot unblockify an empty array of blocks")
val is = new SequenceInputStream(
asJavaEnumeration(blocks.iterator.map(block => new ByteBufferInputStream(block))))
val in: InputStream = compressionCodec.map(c => c.compressedInputStream(is)).getOrElse(is)
val ser = serializer.newInstance()
val serIn = ser.deserializeStream(in)
val obj = serIn.readObject[T]()
serIn.close()
obj
}
结论:Spark的Broadcast模块通过广播变量的形式来实现在各个Executor对不可变变量的共享。它通过Http和Torrent两种机制来传输共享的变量。并且该模块是一个可以定制的模块,用户可以通过实现BroadcastFactory和Broadcast接口,并配置spark.broadcast.factory参数来实现自己的Broadcast传输机制。
版权声明:本文为博主原创文章,未经博主允许不得转载。