Volley 源码解析(1)
心情
来这家公司也有差不多一年的时间了,项目中网络请求部分用到的是Volley,之前都是从别人的博客中了解Volley的用法和他的工作原理。如今项目也写的差不多了,回想起来,知道怎么用,似乎其他的也忘记差不多了,于是,自己想认真看下Volley的源码。先贴张图,看着流程图,也许代码好理解些。
源码解析
1.Volley初始化
public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
File cacheDir = new File(context.getCacheDir(), "volley");
String userAgent = "volley/0";
try {
String network = context.getPackageName();
PackageInfo queue = context.getPackageManager().getPackageInfo(network, 0);
userAgent = network + "/" + queue.versionCode;
} catch (NameNotFoundException var6) {
;
}
if(stack == null) {
if(VERSION.SDK_INT >= 9) {
stack = new HurlStack();
} else {
stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
}
}
BasicNetwork network1 = new BasicNetwork((HttpStack)stack);
RequestQueue queue1 = new RequestQueue(new DiskBasedCache(cacheDir), network1);
queue1.start();
return queue1;
}
首先确定一个Volley网络缓存文件夹交给DiskBasedCache去处理,而DiskBasedCache是Cache的唯一实现,具体实现,这里我们不关心。然后根据Android的版本号去选择要使用的处理请求的方式,3.0之前的用HttpClient,3.0以后就用HttpUrlConnection。然后交给BasicNetWork,通过我们的BasicNetWork生成RequestQueue,用到了适配器模式。
2.构造请求队列
public RequestQueue(Cache cache, Network network, int threadPoolSize, ResponseDelivery delivery) {
this.mSequenceGenerator = new AtomicInteger();
this.mWaitingRequests = new HashMap();
this.mCurrentRequests = new HashSet();
this.mCacheQueue = new PriorityBlockingQueue();
this.mNetworkQueue = new PriorityBlockingQueue();
this.mCache = cache;
this.mNetwork = network;
this.mDispatchers = new NetworkDispatcher[threadPoolSize];
this.mDelivery = delivery;
}
一起来看看它的构造方法,好多属性要初始化。没关系,弄懂他们就对Volley的理解差不多了。
- mSequenceGenerator:是一个序列号生成器,算是对Request的一个标识。
- mWaitingRequests : 这是一个Map容器,里面维护了一个队列。这个是Volley对于缓存请求的一个策略,后面就知道了。
- mCurrentRequests : 这个是当前请求的Request,看到名字就知道啥意思了。
- mCacheQueue : 这是一个缓存队列,我们请求就会放到缓存队列中,如果这里面有就不用去从网络上请求了。
- mNetworkQueue : 这个是网络请求队列,是要从这个队列上取Request去请求网络的。
- mCache:这是我们之前传进来的DiskBaseCache,硬盘缓存。
- mNetwork:这个就是我们之前传进来的BasicNetwork,其实就是出去Http连接的封装而已。
- mDispatchers : 这个称之为网络请求分发者,就是从网络请求队列中获取Request,并且处理的。
-
mDelivery : 这个是执行传达者,就是每当我们的请求处理完成之后,就是通过它告知我们的UI线程的,从而完成更新。
那么,mDelivery是怎么通知我们UI线程呢,其实就是封装了一层Handler。
public RequestQueue(Cache cache, Network network, int threadPoolSize) {
this(cache, network, threadPoolSize, new ExecutorDelivery(new Handler(Looper.getMainLooper())));
}
看,ExecutorDelivery是mDelivery的具体实现,就是通过获得了主线程的Looper,然后把消息丢到MQ中,让Handler从主线程中的Looper中去取消息。当然还有个重要的属性没有介绍,就是mCacheDispatcher,这个是下面个步骤才初始化的,它就是缓存分发者,就是从我们之前介绍的mCacheQueue 队列中获取Request的。
3.开始轮循
public void start() {
this.stop();
this.mCacheDispatcher = new CacheDispatcher(this.mCacheQueue, this.mNetworkQueue, this.mCache, this.mDelivery);
this.mCacheDispatcher.start();
for(int i = 0; i < this.mDispatchers.length; ++i) {
NetworkDispatcher networkDispatcher = new NetworkDispatcher(this.mNetworkQueue, this.mNetwork, this.mCache, this.mDelivery);
this.mDispatchers[i] = networkDispatcher;
networkDispatcher.start();
}
}
这里,虽然代码很简单,但是做的事情却很多,这里将缓存分发者和网络分发者都启动了,那么这些分发者是什么呢?这些分发者都是继承了Thread类,就是我们调用了RequestQueue.start()方法,启动了这么多线程,其中缓存线程是一条,网络请求线程默认是4条,一共启动了5条线程。
4.添加请求
public Request add(Request request) {
request.setRequestQueue(this);
Set var2 = this.mCurrentRequests;
synchronized(this.mCurrentRequests) {
this.mCurrentRequests.add(request);
}
request.setSequence(this.getSequenceNumber());
request.addMarker("add-to-queue");
if(!request.shouldCache()) {
this.mNetworkQueue.add(request);
return request;
} else {
Map var7 = this.mWaitingRequests;
synchronized(this.mWaitingRequests) {
String cacheKey = request.getCacheKey();
if(this.mWaitingRequests.containsKey(cacheKey)) {
Object stagedRequests = (Queue)this.mWaitingRequests.get(cacheKey);
if(stagedRequests == null) {
stagedRequests = new LinkedList();
}
((Queue)stagedRequests).add(request);
this.mWaitingRequests.put(cacheKey, stagedRequests);
if(VolleyLog.DEBUG) {
VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", new Object[]{cacheKey});
}
} else {
this.mWaitingRequests.put(cacheKey, (Object)null);
this.mCacheQueue.add(request);
}
return request;
}
}
}
我喜欢直接看重点,如果开发者设置了不缓存,那么直接将这个Request丢到网络请求队列,让网络请求分发者去处理,如果设置了缓存,那么如果mWaitingRequests中没有键的话,直接丢到缓存队列中,让缓存分发者去处理,同时把mWaitingRequests的值置为空,先开始,这里我也没理解,后来断点调试了之后才明白。第一次请求进来,mWaitingRequests肯定是空,那么就丢到缓存队列中去了,第二次在进来,我们的mWaitingRequests中已经有key了,那么Request就到了我们mWaitingRequests的key中维护的列队中去了。这样是为了防止多次网络请求,节省流量,这是一种策略,如果我们的mWaitingRequests中有key的话,那么我们的请求正在处理。那么,你可以会问,那么触发了一个请求,然后过了几秒还触发了一个请求,那你不是拦截么,其实,在Request处理完成之后,分发者们会调用Request中的RequestQueue中finish()方法,会清空mWaitingRequests所有的缓存。
void finish(Request request) {
Set var2 = this.mCurrentRequests;
synchronized(this.mCurrentRequests) {
this.mCurrentRequests.remove(request);
}
if(request.shouldCache()) {
Map var7 = this.mWaitingRequests;
synchronized(this.mWaitingRequests) {
String cacheKey = request.getCacheKey();
Queue waitingRequests = (Queue)this.mWaitingRequests.remove(cacheKey);
if(waitingRequests != null) {
if(VolleyLog.DEBUG) {
VolleyLog.v("Releasing %d waiting requests for cacheKey=%s.", new Object[]{Integer.valueOf(waitingRequests.size()), cacheKey});
}
this.mCacheQueue.addAll(waitingRequests);
}
}
}
}
这样,就很清楚了,Request中维护了一个RequestQueue对象,从而在处理完成了之后调用RequestQueue中的finish方法。至于Request什么时候调用的,接着看。
5.缓存分发者
public void run() {
if (DEBUG) VolleyLog.v("start new dispatcher");
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
// Make a blocking call to initialize the cache.
mCache.initialize();
while (true) {
try {
// Get a request from the cache triage queue, blocking until
// at least one is available.
final Request request = mCacheQueue.take();
request.addMarker("cache-queue-take");
// If the request has been canceled, don't bother dispatching it.
if (request.isCanceled()) {
request.finish("cache-discard-canceled");
continue;
}
// Attempt to retrieve this item from cache.
Cache.Entry entry = mCache.get(request.getCacheKey());
if (entry == null) {
request.addMarker("cache-miss");
// Cache miss; send off to the network dispatcher.
mNetworkQueue.put(request);
continue;
}
// If it is completely expired, just send it to the network.
if (entry.isExpired()) {
request.addMarker("cache-hit-expired");
request.setCacheEntry(entry);
mNetworkQueue.put(request);
continue;
}
// We have a cache hit; parse its data for delivery back to the request.
request.addMarker("cache-hit");
Response<?> response = request.parseNetworkResponse(
new NetworkResponse(entry.data, entry.responseHeaders));
request.addMarker("cache-hit-parsed");
if (!entry.refreshNeeded()) {
// Completely unexpired cache hit. Just deliver the response.
mDelivery.postResponse(request, response);
} else {
// Soft-expired cache hit. We can deliver the cached response,
// but we need to also send the request to the network for
// refreshing.
request.addMarker("cache-hit-refresh-needed");
request.setCacheEntry(entry);
// Mark the response as intermediate.
response.intermediate = true;
// Post the intermediate response back to the user and have
// the delivery then forward the request along to the network.
mDelivery.postResponse(request, response, new Runnable() {
@Override
public void run() {
try {
mNetworkQueue.put(request);
} catch (InterruptedException e) {
// Not much we can do about this.
}
}
});
}
} catch (InterruptedException e) {
// We may have been interrupted because it was time to quit.
if (mQuit) {
return;
}
continue;
}
}
}
首先,缓存分发者,把我们的硬盘缓存初始化,然后再判断Request是否已经取消,是否已经过期,如果都是true的话,就丢到网络请求队列中去,如果满足了一系列要求,就直接用我们硬盘缓存中的数据,更新UI。否则通过传达者放到网络请求队列中,让网络请求分发者去处理。当然,我们的缓存分发者一直都是在无限循环中,而我们的mCacheQueue.take()是个堵塞操作,没有Request对象,就一直停留在那里。底下的网络请求分发者也是如此。
6网络分发者
@Override
public void run() {
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
Request request;
while (true) {
try {
// Take a request from the queue.
request = mQueue.take();
} catch (InterruptedException e) {
// We may have been interrupted because it was time to quit.
if (mQuit) {
return;
}
continue;
}
try {
request.addMarker("network-queue-take");
// If the request was cancelled already, do not perform the
// network request.
if (request.isCanceled()) {
request.finish("network-discard-cancelled");
continue;
}
// Tag the request (if API >= 14)
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH) {
TrafficStats.setThreadStatsTag(request.getTrafficStatsTag());
}
// Perform the network request.
NetworkResponse networkResponse = mNetwork.performRequest(request);
request.addMarker("network-http-complete");
// If the server returned 304 AND we delivered a response already,
// we're done -- don't deliver a second identical response.
if (networkResponse.notModified && request.hasHadResponseDelivered()) {
request.finish("not-modified");
continue;
}
// Parse the response here on the worker thread.
Response<?> response = request.parseNetworkResponse(networkResponse);
request.addMarker("network-parse-complete");
// Write to cache if applicable.
// TODO: Only update cache metadata instead of entire record for 304s.
if (request.shouldCache() && response.cacheEntry != null) {
mCache.put(request.getCacheKey(), response.cacheEntry);
request.addMarker("network-cache-written");
}
// Post the response back.
request.markDelivered();
mDelivery.postResponse(request, response);
} catch (VolleyError volleyError) {
parseAndDeliverNetworkError(request, volleyError);
} catch (Exception e) {
VolleyLog.e(e, "Unhandled exception %s", e.toString());
mDelivery.postError(request, new VolleyError(e));
}
}
}
这里一步一步来,首先从网络请求队列中获取Request对象,然后如果标识是取消状态,则调用finish。之后就用BasicNetWork去执行网络请求了,获取了NetworkResponse对象,NetworkResponse对象内部封装了服务器那边返回的状态码,回复头,回复体。如果状态码是304表示没有修改,notModified也就是true,还有Request已经被传达者传达了了,那么调用finish方法,结束请求,那么需要更新内容呢,就
通过Request中的parseNetworkResponse解析服务器传达过来的内容。如果需要缓存的话,就将内容保存到硬盘中,最后,通过传达者更新UI,然后将request的是否已经传达过的属性改为true。
这里值得注意的是,当调用request的parseNetworkResponse方法的时候,看了Request的实现StringRequest,其中的代码是这样的:
@Override
protected Response<String> parseNetworkResponse(NetworkResponse response) {
String parsed;
try {
parsed = new String(response.data, HttpHeaderParser.parseCharset(response.headers));
} catch (UnsupportedEncodingException e) {
parsed = new String(response.data);
}
return Response.success(parsed, HttpHeaderParser.parseCacheHeaders(response));
}
再到HttpHeaderParser去看看
public static Entry parseCacheHeaders(NetworkResponse response) {
long now = System.currentTimeMillis();
Map headers = response.headers;
long serverDate = 0L;
long serverExpires = 0L;
long softExpire = 0L;
long maxAge = 0L;
boolean hasCacheControl = false;
String serverEtag = null;
String headerValue = (String)headers.get("Date");
if(headerValue != null) {
serverDate = parseDateAsEpoch(headerValue);
}
headerValue = (String)headers.get("Cache-Control");
if(headerValue != null) {
hasCacheControl = true;
String[] entry = headerValue.split(",");
for(int i = 0; i < entry.length; ++i) {
String token = entry[i].trim();
if(token.equals("no-cache") || token.equals("no-store")) {
return null;
}
if(token.startsWith("max-age=")) {
try {
maxAge = Long.parseLong(token.substring(8));
} catch (Exception var19) {
;
}
} else if(token.equals("must-revalidate") || token.equals("proxy-revalidate")) {
maxAge = 0L;
}
}
}
headerValue = (String)headers.get("Expires");
if(headerValue != null) {
serverExpires = parseDateAsEpoch(headerValue);
}
serverEtag = (String)headers.get("ETag");
if(hasCacheControl) {
softExpire = now + maxAge * 1000L;
} else if(serverDate > 0L && serverExpires >= serverDate) {
softExpire = now + (serverExpires - serverDate);
}
Entry var20 = new Entry();
var20.data = response.data;
var20.etag = serverEtag;
var20.softTtl = softExpire;
var20.ttl = var20.softTtl;
var20.serverDate = serverDate;
var20.responseHeaders = headers;
return var20;
}
这个是对http回复头信息进行解析,http协议中有一行是”Cache-Control”,这个需要服务器那边做支持的,否则就没有这行内容,还有”Expires”过期的时间。这些协议都是属于http应用层缓存,与volley无关的。
总结
最后,结合前面的流程图看看,其实就是当网络请求过来了,封装成Request,然后在缓存队列中找找,找到了,没有过期的缓存,标识都是符合我们的要求的,就直接通过Handler更新我们的UI,如果不符合我们的要求,就丢到网络请求队列中,有四条线程从里面取请求对象,进行解析,然后放到硬盘缓存中,最后传达UI更新信息。只有自己花些时间去分析了,才是自己的东西,看别人分析的,看懂了还是别人的东西,过段时间会忘掉的。如果有时间和精力把Volley自己动手实现遍那就更理解了,哈哈。