Linux下的socket编程实践(7) I/O多路复用技术之select模型
在进入今天的select模型的主题之前,我们先来简单了解一下五种I/O模型:
(1)阻塞I/O(默认采用这种方式)
在服务端socket编程中,我们常见的accpet函数、recv函数都是采取的阻塞形式。以recv为例: 当上层应用App调用recv系统调用时,如果对等方没有发送数据(Linux内核缓冲区中没有数据),上层应用Application1将阻塞;当对等方发送了数据,Linux内核recv端缓冲区数据到达,内核会把数据copy给用户空间。然后上层应用App解除阻塞,执行下一步操作。
(2)非阻塞I/O(不推荐)
上层应用如果应用非阻塞模式, 会循环调用recv函数,接受数据。若缓冲区没有数据,上层应用不会阻塞,recv返回值为-1,错误码是EWOULDBLOCK(图中的标记有误)。上层应用程序不断轮询有没有数据到来。造成上层应用忙等待。大量消耗CPU。因此非阻塞模式很少直接用。应用范围小,一般和IO复用配合使用。
(3)信号驱动I/O模型(不经常使用)
上层应用建立SIGIO信号处理程序。当缓冲区有数据到来,内核会发送信号告诉上层应用App; 当上层应用App接收到信号后,调用recv函数,因缓冲区有数据,recv函数一般不会阻塞。但是这种用于模型用的比较少,属于典型的“拉模式(上层应用被动的去Linux内核空间中拉数据)”。即:上层应用App,需要调用recv函数把数据拉进来,会有时间延迟,我们无法避免在延迟时,又有新的信号的产生,这也是他的缺陷。
(4)异步I/O(不常用)
上层应用调用aio_read函数,同时提交一个应用层的缓冲区buf;调用完毕后,不会阻塞。上层应用程序App可以继续其他任务; 当TCP/IP协议缓冲区有数据时,Linux主动的把内核数据copy到用户空间。然后再给上层应用App发送信号;告诉App数据到来,需要处理!
异步IO属于典型的“推模式”, 是效率最高的一种模式,上层应用程序App有异步处理的能力(在Linux内核的支持下,处理其他任务的同时,也可支持IO通讯, 与Windows平台下的完成端口作用类似IOCP)。
(5)I/O复用的select模型(本篇的重点)
试想如果你遇到下面的问题会怎么处理?
1)server除了要对外响应client的服务外,还要能够接受标准输入的命令来进行管理。
假如使用上述阻塞方式,在单线程中,accept调用和read调用必定有先后顺序,而它们都是阻塞的。比如先调用accept,后调用
read,那么如果没有客户请求时,服务器会一直阻塞在accept,没有机会调用read,也就不能响应标准输入的命令。
2) server要对外提供大量的client请求服务。
假如使用阻塞方式,在单线程中,由于accept和recev都是阻塞式的,那么当一个client被服务器accept后,它可能在send发送消息时阻塞,因此服务器就会阻塞在recev调用。即时此时有其他的client进行connect,也无法进行响应。
这时就需要select来解决啦!select实现的是一个管理者的功能: 用select来管理多个IO, 一旦其中的一个IO或者多个IO检测到我们所感兴趣的事件, select就返回, 返回值就是检测到的事件个数, 并且由第2~4个参数返回那些IO发送了事件, 这样我们就可以遍历这些事件, 进而处理这些事件。
有人说,我用多线程不就可以了吗?但是在UNIX平台下多进程模型擅长处理并发长连接,但却不适用于连接频繁产生和关闭的情形。当然select并不是最高效的,有着O(N)的时间复杂度,关于更高效的epoll我将在后面的博客中继续讲解,欢迎大家关注,╰( ̄▽ ̄)╮
#include <sys/select.h> #include <sys/time.h> #include <sys/types.h> #include <unistd.h> int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
nfds: is the highest-numbered file descriptor in any of the three sets,plus 1[读,写,异常集合中的最大文件描述符+1].
fd_set[四个宏用来对fd_set进行操作]
FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_SET(int fd, fd_set *set);
FD_ZERO(fd_set *set);
timeout[从调用开始到select返回前,会经历的最大等待时间, 注意此处是指的是相对时间]
/timeval结构: struct timeval { long tv_sec; /* seconds */ long tv_usec; /* microseconds */ }; //一些调用使用3个空的set, n为0, 一个非空的timeout来达到较为精确的sleep.
Linux中, select函数改变了timeout值,用来指示还剩下的时间,但很多实现并不改timeout。
为了较好的可移植性,timeout在循环中一般常被重新赋初值。
Timeout取值:
timeout== NULL
无限等待,被信号打断时返回-1, errno 设置成 EINTR
timeout->tv_sec == 0 && tvptr->tv_usec == 0
不等待立即返回
timeout->tv_sec != 0 || tvptr->tv_usec != 0
等待特定时间长度, 超时返回0
注:关于select用来设置超时时间的用法可以参考我的另外一篇博客 http://blog.****.net/nk_test/article/details/49050379
返回值:
如果成功,返回所有sets中描述符的个数;如果超时,返回0;如果出错,返回-1.
下面是使用select改进服务器端和客户端的程序,解决了上述提出的两个问题:
服务器端:
/*示例1: 用select来改进echo回声服务器的client端的echoClient函数 使得可以在单进程的情况下同时监听多个文件描述符; */ void echoClient(int sockfd) { char buf[512]; fd_set rset; //确保标准输入不会被重定向 int fd_stdin = fileno(stdin); int maxfd = fd_stdin > sockfd ? fd_stdin : sockfd; while (true) { FD_ZERO(&rset); //监视两个I/O FD_SET(fd_stdin, &rset); FD_SET(sockfd, &rset); int nReady = select(maxfd+1, &rset, NULL, NULL, NULL); //不需要的置NULL if (nReady == -1) err_exit("select error"); else if (nReady == 0) continue; /** nReady > 0: 检测到了可读事件 **/ if (FD_ISSET(fd_stdin, &rset)) { memset(buf, 0, sizeof(buf)); if (fgets(buf, sizeof(buf), stdin) == NULL) break; if (writen(sockfd, buf, strlen(buf)) == -1) err_exit("write socket error"); } if (FD_ISSET(sockfd, &rset)) { memset(buf, 0, sizeof(buf)); int readBytes = readline(sockfd, buf, sizeof(buf)); if (readBytes == 0) { cerr << "server connect closed..." << endl; exit(EXIT_FAILURE); } else if (readBytes == -1) err_exit("read-line socket error"); cout << buf; } } }
客户端:
/*示例2: 用select来改进echo回射服务器的server端的接受连接与处理连接部分的代码: 使得可以在单进程的情况下处理多客户连接, 对于单核的CPU来说, 单进程使用select处理连接与监听套接字其效率不一定就会比多进程/多线程性能差; */ struct sockaddr_in clientAddr; socklen_t addrLen; int maxfd = listenfd; fd_set rset; fd_set allset; FD_ZERO(&rset); FD_ZERO(&allset); FD_SET(listenfd, &allset); int client[FD_SETSIZE]; //用于保存已连接的客户端套接字 for (int i = 0; i < FD_SETSIZE; ++i) client[i] = -1; int maxi = 0; //用于保存最大的不空闲的位置, 用于select返回之后遍历数组 while (true) { rset = allset; int nReady = select(maxfd+1, &rset, NULL, NULL, NULL); if (nReady == -1) { if (errno == EINTR) continue; err_exit("select error"); } //nReady == 0表示超时, 但是此处是一定不会发生的 else if (nReady == 0) continue; if (FD_ISSET(listenfd, &rset)) { addrLen = sizeof(clientAddr); int connfd = accept(listenfd, (struct sockaddr *)&clientAddr, &addrLen); if (connfd == -1) err_exit("accept error"); int i; for (i = 0; i < FD_SETSIZE; ++i) { if (client[i] < 0) { client[i] = connfd; if (i > maxi) maxi = i; break; } } if (i == FD_SETSIZE) { cerr << "too many clients" << endl; exit(EXIT_FAILURE); } //打印客户IP地址与端口号 cout << "Client information: " << inet_ntoa(clientAddr.sin_addr) << ", " << ntohs(clientAddr.sin_port) << endl; //将连接套接口放入allset, 并更新maxfd FD_SET(connfd, &allset); if (connfd > maxfd) maxfd = connfd; if (--nReady <= 0) continue; } /**如果是已连接套接口发生了可读事件**/ for (int i = 0; i <= maxi; ++i) if ((client[i] != -1) && FD_ISSET(client[i], &rset)) { char buf[512] = {0}; int readBytes = readline(client[i], buf, sizeof(buf)); if (readBytes == -1) err_exit("readline error"); else if (readBytes == 0) { cerr << "client connect closed..." << endl; FD_CLR(client[i], &allset); close(client[i]); client[i] = -1; } //注意此处: Server从Client获取数据之后并没有立即回射回去, // 而是等待四秒钟之后再进行回射 sleep(4); cout << buf; if (writen(client[i], buf, readBytes) == -1) err_exit("writen error"); if (--nReady <= 0) break; } }
版权声明:本文为博主原创文章,未经博主允许不得转载。