第8课:Spark Streaming源码解读之RDD生玉成生命周期彻底研究和思考
本期内容
Dstream与rdd关系彻底研究
Dstream中rdd生成彻底研究
从整个sparkstreaming角度来考虑,rdd分为三个方面的内容:
a.怎么生成的,依靠什么生成的;
b.runtime角度,具体执行的时候与sparkcore上的rdd的执行是否有不同;
c.每个batch duration运行完之后对rdd怎么处理。
本讲主要讲rdd生成全生命周期的彻底研究。
sparkstreaming中Dstream的output operation,有print(),saveAsTextFiles(),foreachRDD()等,其实最终所有的output operation都调用了foreachRDD(),而foreachRDD()方法会产生ForEachDstream这个Dstream。
当我们在程序中调用foreachRDD()外的其他output operation时,起背后会调用foreachRDD()进而产生ForEachDstream,且会触发Job的执行;
当我们在程序中调用foreachRDD()这个output operation时,会产生ForEachDstream,且如果foreachRDD()内部有action操作会触发Job的执行;如果foreachRDD()内部没有action操作,则不会触发Job的执行。
所以说ForEachDstream是transformation,会触发job的产生,但不一定会触发Job的执行。当然Job真正产生是由框架中的timer定时触发的,跟我们的程序代码没有关系。
总结起来说,ForEachDstream有两种产生方式:
a.由ACTION产生,此时会有Job产生且有Job执行,因为action会翻译成RDD的action;
b.由foreachRDD()产生,且如果foreachRDD()内部没有action,则不会执行Job。
如下可见:
/**
* Print the first num elements of each RDD generated in this DStream. This is an output
* operator, so this DStream will be registered as an output stream and there materialized.
*/
def print(num: Int): Unit = ssc.withScope {
def foreachFunc: (RDD[T], Time) => Unit = {
(rdd: RDD[T], time: Time) => {
val firstNum = rdd.take(num + 1)
// scalastyle:off println
println("-------------------------------------------")
println("Time: " + time)
println("-------------------------------------------")
firstNum.take(num).foreach(println)
if (firstNum.length > num) println("...")
println()
// scalastyle:on println
}
}
foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps = false)
}
/**
* Save each RDD in this DStream as at text file, using string representation
* of elements. The file name at each batch interval is generated based on
* `prefix` and `suffix`: "prefix-TIME_IN_MS.suffix".
*/
def saveAsTextFiles(prefix: String, suffix: String = ""): Unit = ssc.withScope {
val saveFunc = (rdd: RDD[T], time: Time) => {
val file = rddToFileName(prefix, suffix, time)
rdd.saveAsTextFile(file)
}
this.foreachRDD(saveFunc, displayInnerRDDOps = false)
}
foreachRDD()的源码如下:
/**
* Apply a function to each RDD in this DStream. This is an output operator, so
* 'this' DStream will be registered as an output stream and therefore materialized.
*
* @param foreachFunc foreachRDD function
* @param displayInnerRDDOps Whether the detailed callsites and scopes of the RDDs generated
* in the `foreachFunc` to be displayed in the UI. If `false`, then
* only the scopes and callsites of `foreachRDD` will override those
* of the RDDs on the display.
*/
private def foreachRDD(
foreachFunc: (RDD[T], Time) => Unit,
displayInnerRDDOps: Boolean): Unit = {
new ForEachDStream(this,
context.sparkContext.clean(foreachFunc, false), displayInnerRDDOps).register()
}
RDD的action不会产生rdd,Dstream的action也不会产生rdd.
foreachRDD方法是sparkStreaming的后门,使你直接基于rdd进行操作,而背后还是产生ForEachDStream。
DStreams internally is characterized by a few basic properties:
// Dstream之间有依赖关系
- A list of other DStreams that the DStream depends on
////Dstream在计算时定期产生RDD
- A time interval at which the DStream generates an RDD
- A function that is used to generate an RDD after each time interval
DStreams的具体实现TransformedDStream:
private[streaming]
class TransformedDStream[U: ClassTag] (
parents: Seq[DStream[_]],
transformFunc: (Seq[RDD[_]], Time) => RDD[U]
) extends DStream[U](parents.head.ssc) {
require(parents.length > 0, "List of DStreams to transform is empty")
require(parents.map(_.ssc).distinct.size == 1, "Some of the DStreams have different contexts")
require(parents.map(_.slideDuration).distinct.size == 1,
"Some of the DStreams have different slide durations")
override def dependencies: List[DStream[_]] = parents.toList
override def slideDuration: Duration = parents.head.slideDuration
//DStreams的计算会产生RDD,所以我们说DStreams是逻辑级别的,是RDD的模板
override def compute(validTime: Time): Option[RDD[U]] = {
val parentRDDs = parents.map { parent => parent.getOrCompute(validTime).getOrElse(
// Guard out against parent DStream that return None instead of Some(rdd) to avoid NPE
throw new SparkException(s"Couldn't generate RDD from parent at time $validTime"))
}
val transformedRDD = transformFunc(parentRDDs, validTime)
if (transformedRDD == null) {
throw new SparkException("Transform function must not return null. " +
"Return SparkContext.emptyRDD() instead to represent no element " +
"as the result of transformation.")
}
Some(transformedRDD)
}
/**
* Wrap a body of code such that the call site and operation scope
* information are passed to the RDDs created in this body properly.
* This has been overriden to make sure that `displayInnerRDDOps` is always `true`, that is,
* the inner scopes and callsites of RDDs generated in `DStream.transform` are always
* displayed in the UI.
*/
override protected[streaming] def createRDDWithLocalProperties[U](
time: Time,
displayInnerRDDOps: Boolean)(body: => U): U = {
super.createRDDWithLocalProperties(time, displayInnerRDDOps = true)(body)
}
}
DStreams的具体实现ForEachDStream:
**
* An internal DStream used to represent output operations like DStream.foreachRDD.
* @param parent Parent DStream
* @param foreachFunc Function to apply on each RDD generated by the parent DStream
* @param displayInnerRDDOps Whether the detailed callsites and scopes of the RDDs generated
* by `foreachFunc` will be displayed in the UI; only the scope and
* callsite of `DStream.foreachRDD` will be displayed.
*/
private[streaming]
class ForEachDStream[T: ClassTag] (
parent: DStream[T],
foreachFunc: (RDD[T], Time) => Unit,
displayInnerRDDOps: Boolean
) extends DStream[Unit](parent.ssc) {
//DStream依赖关系
override def dependencies: List[DStream[_]] = List(parent)
override def slideDuration: Duration = parent.slideDuration
override def compute(validTime: Time): Option[RDD[Unit]] = None
//ForEachDStream会产生job
override def generateJob(time: Time): Option[Job] = {
parent.getOrCompute(time) match {
case Some(rdd) =>
val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) {
foreachFunc(rdd, time)
}
Some(new Job(time, jobFunc))
case None => None
}
}
}
实质上,在整个streaming的操作中,所有的操作都会产生DStream,都是transformation,只不过在映射成物理级别的RDD的操作时,有些操作(OUTPUT OPERATION)会映射成RDD的ACTION,触发Job的执行。
首先产生的DStream有InputDStream,然后经由各种 Transformations on DStreams,和最终的
Output Operations on DStreams,产生foreachDStream.
同RDD一样,DStream从后往前依赖,且是lazy级别。
DStream是RDD的模板,DStreamGraph是DAG的模板。
// 类型是 SocketInputDStream,属于InputDStream
val lines = ssc.socketTextStream("localhost", 9999)
// 类型是 FlatMappedDStream
val words = lines.flatMap(_.split(" "))
// 类型是 MappedDStream
val pairs = words.map(word => (word, 1))
// 类型是 ShuffledDStream
val wordCounts = pairs.reduceByKey(_ + _)
// 类型是 ForeachDStream
wordCounts.print()
DStream有个成员generatedRDDs,所以逻辑上每个DStream实例都有个generatedRDDs;但实质物理执行上,DStream之间有依赖关系,从后往前推,只有最后一个DStream的句柄,执行的时候只有最后一个DStream,这跟RDD一样,就是函数的展开。
// RDDs generated, marked as private[streaming] so that testsuites can access it
@transient
//每个TIME对应一个RDD,每个RDD对应一个job
//RDD有依赖关系,从后往前回溯可以得到所有RDD
private[streaming] var generatedRDDs = new HashMap[Time, RDD[T]] ()
generatedRDDs是怎么产生的呢?DStream的getOrCompute(time: Time)方法。
/**
* Get the RDD corresponding to the given time; either retrieve it from cache
* or compute-and-cache it.
*/
private[streaming] final def getOrCompute(time: Time): Option[RDD[T]] = {
// If RDD was already generated, then retrieve it from HashMap,
// or else compute the RDD
generatedRDDs.get(time).orElse {
//每个滑动窗口都会产生RDD
// Compute the RDD if time is valid (e.g. correct time in a sliding window)
// of RDD generation, else generate nothing.
if (isTimeValid(time)) {
val rddOption = createRDDWithLocalProperties(time, displayInnerRDDOps = false) {
// Disable checks for existing output directories in jobs launched by the streaming
// scheduler, since we may need to write output to an existing directory during checkpoint
// recovery; see SPARK-4835 for more details. We need to have this call here because
// compute() might cause Spark jobs to be launched.
PairRDDFunctions.disableOutputSpecValidation.withValue(true) {
compute(time)
}
}
rddOption.foreach { case newRDD =>
// Register the generated RDD for caching and checkpointing
if (storageLevel != StorageLevel.NONE) {
newRDD.persist(storageLevel)
logDebug(s"Persisting RDD ${newRDD.id} for time $time to $storageLevel")
}
if (checkpointDuration != null && (time - zeroTime).isMultipleOf(checkpointDuration)) {
newRDD.checkpoint()
logInfo(s"Marking RDD ${newRDD.id} for time $time for checkpointing")
}
generatedRDDs.put(time, newRDD)
}
rddOption
} else {
None
}
}
}
DStream的子类ReceiverInputDStream的compute(validTime: Time)方法:
/**
* Generates RDDs with blocks received by the receiver of this stream. */
override def compute(validTime: Time): Option[RDD[T]] = {
val blockRDD = {
if (validTime < graph.startTime) {
// If this is called for any time before the start time of the context,
// then this returns an empty RDD. This may happen when recovering from a
// driver failure without any write ahead log to recover pre-failure data.
new BlockRDD[T](ssc.sc, Array.empty)
} else {
// Otherwise, ask the tracker for all the blocks that have been allocated to this stream
// for this batch
//从receiverTracker拿到从输入源的取得的数据
val receiverTracker = ssc.scheduler.receiverTracker
val blockInfos = receiverTracker.getBlocksOfBatch(validTime).getOrElse(id, Seq.empty)
// Register the input blocks information into InputInfoTracker
val inputInfo = StreamInputInfo(id, blockInfos.flatMap(_.numRecords).sum)
ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo)
// Create the BlockRDD
createBlockRDD(validTime, blockInfos)
}
}
Some(blockRDD)
}
private[streaming] def createBlockRDD(time: Time, blockInfos: Seq[ReceivedBlockInfo]): RDD[T] = {
if (blockInfos.nonEmpty) {
val blockIds = blockInfos.map { _.blockId.asInstanceOf[BlockId] }.toArray
// Are WAL record handles present with all the blocks
val areWALRecordHandlesPresent = blockInfos.forall { _.walRecordHandleOption.nonEmpty }
if (areWALRecordHandlesPresent) {
// If all the blocks have WAL record handle, then create a WALBackedBlockRDD
val isBlockIdValid = blockInfos.map { _.isBlockIdValid() }.toArray
val walRecordHandles = blockInfos.map { _.walRecordHandleOption.get }.toArray
new WriteAheadLogBackedBlockRDD[T](
ssc.sparkContext, blockIds, walRecordHandles, isBlockIdValid)
} else {
// Else, create a BlockRDD. However, if there are some blocks with WAL info but not
// others then that is unexpected and log a warning accordingly.
if (blockInfos.find(_.walRecordHandleOption.nonEmpty).nonEmpty) {
if (WriteAheadLogUtils.enableReceiverLog(ssc.conf)) {
logError("Some blocks do not have Write Ahead Log information; " +
"this is unexpected and data may not be recoverable after driver failures")
} else {
logWarning("Some blocks have Write Ahead Log information; this is unexpected")
}
}
//再次检验block是否还存在
val validBlockIds = blockIds.filter { id =>
ssc.sparkContext.env.blockManager.master.contains(id)
}
if (validBlockIds.size != blockIds.size) {
logWarning("Some blocks could not be recovered as they were not found in memory. " +
"To prevent such data loss, enabled Write Ahead Log (see programming guide " +
"for more details.")
}
new BlockRDD[T](ssc.sc, validBlockIds)
}
} else {
// If no block is ready now, creating WriteAheadLogBackedBlockRDD or BlockRDD
// according to the configuration
if (WriteAheadLogUtils.enableReceiverLog(ssc.conf)) {
new WriteAheadLogBackedBlockRDD[T](
ssc.sparkContext, Array.empty, Array.empty, Array.empty)
} else {
//没有输入时也会产生RDD,只不过是空的
new BlockRDD[T](ssc.sc, Array.empty)
}
}
}
再来看下DStream的子类MappedDStream的compute(validTime: Time)方法:
private[streaming]
class MappedDStream[T: ClassTag, U: ClassTag] (
parent: DStream[T],
mapFunc: T => U
) extends DStream[U](parent.ssc) {
override def dependencies: List[DStream[_]] = List(parent)
override def slideDuration: Duration = parent.slideDuration
override def compute(validTime: Time): Option[RDD[U]] = {
//getOrCompute()会生成RDD,也就是说这里是从父DStream产生RDD
//所以说虽然逻辑上有很多RDD,但其实只有一个,从后往前推
//这里的map是对RDD进行操作,所以说DStream的计算其实是对RDD进行计算
parent.getOrCompute(validTime).map(_.map[U](mapFunc))
}
}
每个DSTEAM在计算时都会生成RDD。第一个DStream需要自己生成RDD,除了第一个DStream,都是从parent获取RDD然后对它进行计算,然后返回RDD.也就是说DStream的操作compute()方法返回的是RDD,然后这个RDD被DStream封装了一下,作为方法的成员,而计算本身是物理级别的。对DStream的transformation操作,就作用于对RDD的transformation操作,只不过这种完美映射关系要加上时间维度。
我们再来看有可能产生ACTION的DStream:ForEachDStream。
**
* An internal DStream used to represent output operations like DStream.foreachRDD.
* @param parent Parent DStream
* @param foreachFunc Function to apply on each RDD generated by the parent DStream
* @param displayInnerRDDOps Whether the detailed callsites and scopes of the RDDs generated
* by `foreachFunc` will be displayed in the UI; only the scope and
* callsite of `DStream.foreachRDD` will be displayed.
*/
private[streaming]
class ForEachDStream[T: ClassTag] (
parent: DStream[T],
foreachFunc: (RDD[T], Time) => Unit,
displayInnerRDDOps: Boolean
) extends DStream[Unit](parent.ssc) {
override def dependencies: List[DStream[_]] = List(parent)
override def slideDuration: Duration = parent.slideDuration
//这里的compute什么都没做,真正调用的还是generateJob
override def compute(validTime: Time): Option[RDD[Unit]] = None
//generateJob()是被调度器控制的,不是我们的DStream控制的
override def generateJob(time: Time): Option[Job] = {
parent.getOrCompute(time) match {
case Some(rdd) =>
//jobFunc是具体要执行的函数,封装了起来
val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) {
foreachFunc(rdd, time)
}
//New的Job就是业务逻辑,是个runnable对象
Some(new Job(time, jobFunc))
case None => None
}
}
}
foreachFunc(rdd, time)一般是输出函数,会导致output的action操作。在具体的时间上作用与RDD.来看个具体的foreachFunc的操作。
/**
* Print the first num elements of each RDD generated in this DStream. This is an output
* operator, so this DStream will be registered as an output stream and there materialized.
*/
def print(num: Int): Unit = ssc.withScope {
def foreachFunc: (RDD[T], Time) => Unit = {
(rdd: RDD[T], time: Time) => {
val firstNum = rdd.take(num + 1)
// scalastyle:off println
println("-------------------------------------------")
println("Time: " + time)
println("-------------------------------------------")
firstNum.take(num).foreach(println)
if (firstNum.length > num) println("...")
println()
// scalastyle:on println
}
}
foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps = false)
}
JobGenerator的generateJobs(time: Time)方法调用DStreamGraph.generateJobs(time):
/** Generate jobs and perform checkpoint for the given `time`. */
private def generateJobs(time: Time) {
// Set the SparkEnv in this thread, so that job generation code can access the environment
// Example: BlockRDDs are created in this thread, and it needs to access BlockManager
// Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
SparkEnv.set(ssc.env)
Try {
jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
graph.generateJobs(time) // generate jobs using allocated block
} match {
case Success(jobs) =>
val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
case Failure(e) =>
jobScheduler.reportError("Error generating jobs for time " + time, e)
}
eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
}
DStreamGraph.generateJobs(time)调用outputStream.generateJob(time)方法:
def generateJobs(time: Time): Seq[Job] = {
logDebug("Generating jobs for time " + time)
val jobs = this.synchronized {
outputStreams.flatMap { outputStream =>
val jobOption = outputStream.generateJob(time)
jobOption.foreach(_.setCallSite(outputStream.creationSite))
jobOption
}
}
logDebug("Generated " + jobs.length + " jobs for time " + time)
jobs
}
outputStream的一个具体实现ForEachDStream的generateJob(time: Time)方法:
override def generateJob(time: Time): Option[Job] = {
parent.getOrCompute(time) match {
case Some(rdd) =>
val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) {
foreachFunc(rdd, time)
}
Some(new Job(time, jobFunc))
case None => None
}
}