hdu3976-Electric resistance(高斯消元有关问题7)
hdu3976--Electric resistance(高斯消元问题7)
Electric resistance
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d
& %I64u
Description
Now give you a circuit who has n nodes (marked from 1 to n) , please tell abcdxyzk the equivalent resistance of the circuit between node 1 and node n. You may assume that the circuit is connected. The equivalent resistance of the
circuit between 1 and n is that, if you only consider node 1 as positive pole and node n as cathode , all the circuit could be regard as one resistance . (It's important to analyse complicated circuit ) At most one resistance will between any two nodes.

Input
In the first line has one integer T indicates the number of test cases. (T <= 100)
Each test first line contain two number n m(1<n<=50,0<m<=2000), n is the number of nodes, m is the number of resistances.Then follow m lines ,each line contains three integers a b c, which means there is one resistance between node a and node b whose resistance is c. (1 <= a,b<= n, 1<=c<=10^4) You may assume that any two nodes are connected!
Each test first line contain two number n m(1<n<=50,0<m<=2000), n is the number of nodes, m is the number of resistances.Then follow m lines ,each line contains three integers a b c, which means there is one resistance between node a and node b whose resistance is c. (1 <= a,b<= n, 1<=c<=10^4) You may assume that any two nodes are connected!
Output
for each test output one line, print "Case #idx: " first where idx is the case number start from 1, the the equivalent resistance of the circuit between 1 and n. Please output the answer for 2 digital after the decimal point .
Sample Input
1 4 5 1 2 1 2 4 4 1 3 8 3 4 19 2 3 12
Sample Output
Case #1: 4.21
给出n个节点,和每个节点中的电阻,问总的电阻是多少。
设每个节点的电势为ui那么总的电压为un - u1 , 设流过这个电路的电流为1,那么电阻也就是un - u1了。通过每个节点流入的电流和流出的电流相同,得到n个方程。
设在1节点流入的是-1,n节点流出的是1,那么对于u到v有电阻w,也就是u点的电流 (v-u)/w,对于v点的电流为(u-v)/w ;
得到n个方程后高斯消元,设1节点的电势为0,这样就能直接求出n节点的电势,也就是整个的电阻了。
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std ; #define eps 1e-8 double Map[60][60] , a[60] , x[60] ; void swap1(int p,int q,int n) { int i ; double temp ; temp = a[p] ; a[p] = a[q] ; a[q] = temp ; for(i = 1; i <= n ; i++) { temp = Map[p][i] ; Map[p][i] = Map[q][i] ; Map[q][i] = temp ; } return ; } double gauss(int n) { int i , j , k , t , max1 ; double temp ; for(i = 1 , t = 1 ; i <= n && t <= n ; i++ , t++) { max1 = i ; for(j = i ; j <= n ; j++) if( fabs(Map[j][t])-fabs(Map[max1][t]) > 0 ) { max1 = j ; } if( fabs(Map[max1][t]) < eps ) { i-- ; continue ; } if( i != max1 ) swap1(i,max1,n) ; for(j = i+1 ; j <= n ; j++) { if( fabs(Map[j][t]) < eps ) continue ; temp = Map[j][t] / Map[i][t] ; a[j] -= (a[i]*temp) ; for(k = t ; k <= n ; k++) Map[j][k] -= (Map[i][k]*temp) ; } } for(i = n ; i >= 1 ; i--) { x[i] = a[i] ; for(j = i+1 ; j <= n ; j++) x[i] -= ( Map[i][j]*x[j] ) ; x[i] /= Map[i][i] ; } return fabs(a[n-1]/Map[n-1][n]) ; } int main() { int t , tt , n , m , u , v ; double w ; scanf("%d", &t) ; for(tt = 1 ; tt <= t ; tt++) { memset(Map,0,sizeof(Map)) ; memset(a,0,sizeof(a)) ; scanf("%d %d", &n, &m) ; a[1] = -1.0 ; a[n] = 1.0 ; while(m--) { scanf("%d %d %lf", &u, &v, &w) ; Map[u][u] -= 1.0/w ; Map[u][v] += 1.0/w ; Map[v][u] += 1.0/w ; Map[v][v] -= 1.0/w ; } for(int i = 1 ; i <= n ; i++) Map[i][1] = 0 ; printf("Case #%d: %.2lf\n", tt, gauss(n) ); } return 0; }