HDU-1215-七夕节(Java+素数击表+超时坑人)

HDU-1215-七夕节(Java+素数打表+超时坑人)

七夕节

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 33206    Accepted Submission(s): 10317


Problem Description
七夕节那天,月老来到数字王国,他在城门上贴了一张告示,并且和数字王国的人们说:"你们想知道你们的另一半是谁吗?那就按照告示上的方法去找吧!"
人们纷纷来到告示前,都想知道谁才是自己的另一半.告示如下:

HDU-1215-七夕节(Java+素数击表+超时坑人)


数字N的因子就是所有比N小又能被N整除的所有正整数,如12的因子有1,2,3,4,6.
你想知道你的另一半吗?
 

Input
输入数据的第一行是一个数字T(1<=T<=500000),它表明测试数据的组数.然后是T组测试数据,每组测试数据只有一个数字N(1<=N<=500000).
 

Output
对于每组测试数据,请输出一个代表输入数据N的另一半的编号.
 

Sample Input
3 2 10 20
 

Sample Output
1 8 22
 

Author
Ignatius.L
 

Source
杭电ACM省赛集训队选拔赛之热身赛
 

Recommend
Eddy   |   We have carefully selected several similar problems for you:  1286 1406 1211 1164 1108 



这个方法,效率不高,但是勉强能Accepted,因为按照一般的方法去取因数,即用一个循环来求的话.
或者用一个sqrt(n)来减少运算量都是不够的,因为给定的N的范围是(1<=N<=500000).数字太大了.
这个方法的意思很容易理解,例如以12为例,2是因子,同样我们就知道了6也是因子,于是6之后
的所有数字我们都没有算的必要了.如果再循环就会超时,所以我们只需要设定一个变量,在每次
遇到n的因子的时候,让循环的总数减少即当 j!=n/j 的时候,c=n/j;

//开头几种方法都超时!
import java.io.*;
import java.util.*;

public class Main
{

	public static void main(String[] args)
	{
		// TODO Auto-generated method stub
		Scanner input = new Scanner(System.in);
		int T = input.nextInt();
		for (int i = 0; i < T; i++)
		{
			int sum = 1;
			int n = input.nextInt();
			int c = n; 								// 每次循环改变值
			for (int j = 2; j < c; j++)
			{
				if (n % j == 0)
				{
					sum += j;
					if (j != n / j)
					{
						sum += n / j;
						c = n / j;
					}
				}
			}
			System.out.println(sum);
		}
	}

}


自己写的init2()方法超时.......

//素数打表的方法试一下(毕竟通用方法)



import java.io.*;
import java.util.*;

public class Main
{
	static int a[] = new int[500010];
	public static void main(String args[])
	{
		Scanner input = new Scanner(System.in);
		init1();
		int T=input.nextInt();
		for(int i=0;i<T;i++)
		{
			int n=input.nextInt();
			System.out.println(a[n]);
		}
	}
	
	public static void init1()
	{
		int i, j, m;
		m = 500010/2;
		for (i=1; i<m; ++i)
			for (j=i+i; j<500010; j+=i)
				a[j] += i;
	}
	
	public static void init2()
	{
		int i,j,sum;
		int n=500010;
		for(i=1;i<500010;i++)
		{
			sum=1;
			for(j=2;j<Math.sqrt(i);j++)
			{
				if(i%j==0)
				{
					sum+=j;
					if(j!=i/j)
					{
						sum+=i/j;
					}
				}
			}
			a[i]=sum;
		}
	}
}