UVA 12125 March of the Penguins

题意:

  给定一些冰块,每个冰块上有一些企鹅,每个冰块有一个可以跳出的次数限制,每个冰块位于一个坐标,现在每个企鹅跳跃力为d,问所有企鹅能否跳到一点上,如果可以输出所有落脚冰块,如果没有方案就打印-1

分析:

  很显然的最大流问题。把每个冰块x拆成x和x',连x->x'流量为跳出的次数限制。枚举落脚冰块建图跑最大流即可

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <map>
#include <queue>
using namespace std;
const int maxn = 202 + 10;
const int INF = 1000000000;
struct Edge
{
    int from,to,cap,flow;
};
struct Dinic
{
    int n,m,s,t;
    vector<Edge>edges;
    vector<int>G[maxn];
    bool vis[maxn];
    int d[maxn];
    int cur[maxn];
    void clearall(int n)
    {
        for(int i=0;i<n;i++)
            G[i].clear();
        edges.clear();
    }
    void clearflow()
    {
        for(int i=0;i<edges.size();i++)
            edges[i].flow=0;
    }
    void addedge(int from,int to,int cap)
    {
        edges.push_back((Edge){from,to,cap,0});
        edges.push_back((Edge){to,from,0,0});
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool bfs()
    {
        memset(vis,0,sizeof(vis));
        queue<int>Q;
        Q.push(s);
        vis[s]=1;
        d[s]=0;
        while(!Q.empty())
        {
            int x=Q.front();
            Q.pop();
            for(int i=0;i<G[x].size();i++)
            {
                Edge& e=edges[G[x][i]];
                if(!vis[e.to]&&e.cap>e.flow)
                {
                    vis[e.to]=1;
                    d[e.to]=d[x]+1;
                    Q.push(e.to