校招真题练习008 浇花(百度)
题目描述
一个花坛中有很多花和两个喷泉。
喷泉可以浇到以自己为中心,半径为r的圆内的所有范围的花。
现在给出这些花的坐标和两个喷泉的坐标,要求你安排两个喷泉浇花的半径r1和r2,
使得所有的花都能被浇到的同时, r1^2 + r2^2 的值最小。
输入描述:
第一行5个整数n,x1,y1,x2,y2表示花的数量和两个喷泉的坐标。
接下来n行,每行两个整数xi, yi表示第i朵花的坐标。
满足1 <= n <= 2000,花和喷泉的坐标满足-107<= x, y <= 107。
输出描述:
一个整数,r1^2 + r2^2 的最小值。
1 import sys 2 lines = sys.stdin.readlines() 3 #print(lines) 4 line0 = list(map(int,lines[0].strip().split())) 5 n = line0[0] 6 x1,y1,x2,y2 = line0[1],line0[2],line0[3],line0[4] 7 #print(x1,y1,x2,y2) 8 flowers = [] 9 line_next = lines[1:] 10 for i in range(len(line_next)): 11 line = list(map(int,line_next[i].strip().split())) 12 flowers.append([line[0],line[1]]) 13 #print(flowers) 14 dic1 = {-1:0} 15 dic2 = {-1:0} 16 minR1 = 0 17 minR2 = 0 18 19 for i in range(len(flowers)): 20 distance1 = (flowers[i][0]-x1)**2 + (flowers[i][1]-y1)**2 21 distance2 = (flowers[i][0]-x2)**2 + (flowers[i][1]-y2)**2 22 dic1[i] = distance1 23 minR1 = max(minR1,distance1) 24 dic2[i] = distance2 25 minR2 = max(minR2,distance2) 26 minR = min(minR1,minR2) 27 #print(dic1,dic2) 28 lst1 = sorted(dic1.items(),key=lambda x:x[1]) 29 t1 = minR1 30 t2 = minR2 31 for idx in range(1,len(lst1)): 32 flowerid = lst1[idx][0] 33 t1 = lst1[idx][1] 34 dic2.pop(flowerid) 35 t2 = min(t2,max(dic2.values())) 36 minR = min(minR,t1+t2) 37 print(minR)
类型:二维数组,排序
思路:贪心算法,先将所有的花与某一个喷头的距离排序,按距离从近到远对此花进行分配。
如果分配到喷头1的范围,则喷头一的r会逐渐增加,同时将此花从喷头二的列表中删除,重新计算喷头二的最大值。