Logarithmic-Trigonometric积分系列(二)

[Largedisplaystyle int_0^{pi/2}ln^2(sin x)ln(cos x) an x \,{ m d}x ]


(Largemathbf{Solution:})
Let (J) donates the integral and it is easy to see that

[egin{align*} J&=int_0^{pi/4}ln^2(sin x)ln(cos x) an x \,{ m d}x+ int_{pi/4}^{pi/2}ln^2(sin x)ln(cos x) an x \,{ m d}xcr &=int_0^{pi/4}ln^2(sin x)ln(cos x) an x \,{ m d}x+ int_{0}^{pi/4}ln^2(cos x)ln(sin x)cot x \,{ m d}xcr end{align*}]

Now, to calculate (J) we make the substitution (tleftarrowsin^2x):

[J=frac{1}{16}int_0^1frac{ln(1-u)}{1-u}ln^2(u)\,{ m d}u ]

But

[frac{ln(1-u)}{1-u}=-left(sum_{n=0}^infty u^n ight)left(sum_{n=1}^infty frac{u^n}{n} ight) =-sum_{n=1}^infty H_nu^n]

where (H_n=displaystylesum_{k=1}^n frac{1}{k}).Hence

[J=-frac{1}{16}sum_{n=1}^infty H_nint_0^1u^nln^2(u){ m d}u =-frac{1}{8}sum_{n=1}^inftyfrac{ H_n}{(n+1)^3}]

The sum (displaystylesum_{n=1}^inftyfrac{H_n}{n^3}) is known, it can be evaluated as follows, first we have

[H_n=sum_{k=1}^inftyleft(frac{1}{k}-frac{1}{k+n} ight)= sum_{k=1}^infty frac{n}{k(k+n)}]

Thus

[sum_{n=1}^inftyfrac{H_n}{n^3}=sum_{k,ngeq1}frac{1}{n^2k(n+k)} =sum_{k,ngeq1}frac{1}{k^2n(n+k)}]

Taking the half sum we find

[sum_{n=1}^inftyfrac{H_n}{n^3}=frac{1}{2}sum_{k,ngeq1}frac{1}{kn(k+n)}left(frac{1}{k}+frac{1}{n} ight)= frac{1}{2}sum_{k,ngeq1}frac{1}{k^2n^2}=frac{1}{2}zeta^2(2)]

then we obtain

[Largeoxed{displaystyle egin{align*} int_0^{pi/2}ln^2(sin x)ln(cos x) an x \,{ m d}x&=frac{1}{8}zeta(4)-frac{1}{16}zeta^2(2)\ &=color{blue}{-frac{pi^4}{2880}} end{align*}}]