HDOJ 1061 Rightmost Digit(高速幂求模)
HDOJ 1061 Rightmost Digit(快速幂求模)
Rightmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 38422 Accepted Submission(s): 14473
Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2 3 4
Sample Output
7 6HintIn the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
快速幂模板题。
快速幂算法:快速幂顾名思义,就是快速算某个数的多少次幂。其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高。
原理:
2.快速幂求模模板:
以下以求a的b次方来介绍
把b转换成二进制数。
该二进制数第i位的权为
例如
11的二进制是1011
11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1
因此,我们将a¹¹转化为算
代码实现:
1.快速幂模板:
<span style="color:#000000;">int pow3(int a,int b) { int r=1,base=a; while(b!=0) { if(b&1) r*=base; base*=base; b>>=1; } return r; }//快速幂模板 </span>
2.快速幂求模模板:
<span style="color:#000000;">long long result(long long a,long long b,long long m) { long long d,t; d=1; t=a; while (b>0) { if (b%2==1) d=(d*t)%m; b/=2; t=(t*t)%m; } return d; }//快速幂求模算法模板 </span>
此题为快速幂求模的模板题,代码如下:
<span style="color:#000000;">#include<iostream> using namespace std; long long pow(long long n) { long long d,t; d=1;t=n; while(n>0) { if(n&1) d=(d*t)%10; n>>=1; t=(t*t)%10; } return d; } int main() { long long n,ans; int t; cin>>t; while(t--) { cin>>n; ans=pow(n); cout<<ans<<endl; } return 0; }</span>