uva 1347 - Tour(双调欧几里得旅行商有关问题)
uva 1347 - Tour(双调欧几里得旅行商问题)
题目链接:uva 1347 - Tour
题目大意:给出n个点,确定一条连接各点的最短闭合旅程的问题。
解题思路:dp[i][j]表示说从i联通到1,再从1联通到j的距离。
dp[i][j] = dp[i-1][j] + dis(i,i-1);
dp[i][i-1] = min (dp[i][i-1], dp[i-1][j] + dis(i, j));
双调欧几里得旅行商问题
#include <stdio.h> #include <string.h> #include <math.h> #include <algorithm> using namespace std; const int N = 105; const double INF = 0x3f3f3f3f3f3f3f3f; int n; double x[N], y[N], dp[N][N]; inline double dis (int a, int b) { return sqrt((x[a]-x[b])*(x[a]-x[b]) + (y[a]-y[b])*(y[a]-y[b])); } void init () { for (int i = 1; i <= n; i++) scanf("%lf%lf", &x[i], &y[i]); memset(dp, 0, sizeof(dp)); dp[2][1] = dis(1, 2); } double solve () { for (int i = 3; i <= n; i++) { dp[i][i-1] = INF; for (int j = 1; j < i-1; j++) { dp[i][i-1] = min(dp[i][i-1], dp[i-1][j] + dis(i, j)); dp[i][j] = dp[i-1][j] + dis(i, i-1); } } double ans = INF; for (int i = 1; i < n; i++) ans = min(ans, dp[n][i] + dis(n, i)); return ans; } int main () { while (scanf("%d", &n) == 1) { init (); printf("%.2lf\n", solve ()); } return 0; }