POJ1328 区间选点有关问题(贪心)
POJ1328 区间选点问题(贪心)
以下内容复制于http://blog.****.net/dgq8211/article/details/7534776
先来看看什么是区间选点问题
数轴上有n个闭区间[ai,bi]。取尽量少的点,使得每个区间内都至少有一个点(不同区间内含的点可以是同一个)。
贪心策略:
按照b1<=b2<=b3…(b相同时按a从大到小)的方式排序排序,从前向后遍历,当遇到没有加入集合的区间时,选取这个区间的右端点b。
证明:
为了方便起见,如果区间i内已经有一个点被取到,我们称区间i被满足。
1、首先考虑区间包含的情况,当小区间被满足时大区间一定被满足。所以我们应当优先选取小区间中的点,从而使大区间不用考虑。
按照上面的方式排序后,如果出现区间包含的情况,小区间一定在大区间前面。所以此情况下我们会优先选择小区间。
则此情况下,贪心策略是正确的。
2、排除情况1后,一定有a1<=a2<=a3……。
对于区间1来说,显然选择它的右端点是明智的。因为它比前面的点能覆盖更大的范围。
从而此情况下,贪心策略也是正确的。
#include <stdio.h> #include <algorithm> using namespace std; struct Extent { int a,b; bool operator < (const Extent& S)const { return b < S.b || b == S.b && a > S.a; } }A[10002]; int main() { int z,n,cnt,end; scanf("%d",&z); while(z--) { cnt = 0; end = -1; scanf("%d",&n); for(int i=0;i<n;i++) scanf("%d%d",&A[i].a,&A[i].b); sort(A,A+n); for(int i=0;i<n;i++) { if(end < A[i].a) { end = A[i].b; cnt++; } } printf("%d\n",cnt); } return 0; }
例题:http://acm.nyist.net/JudgeOnline/problem.php?pid=287
Radar Installation
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 38208 | Accepted: 8483 |
Description
Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d
distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.

Figure A Sample Input of Radar Installations
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
Figure A Sample Input of Radar Installations
Input
The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is
followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.
The input is terminated by a line containing pair of zeros
The input is terminated by a line containing pair of zeros
Output
For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.
Sample Input
3 2 1 2 -3 1 2 1 1 2 0 2 0 0
Sample Output
Case 1: 2 Case 2: 1
Source
Beijing 2002
题目的意思就是给你一个坐标轴,雷达在x轴上,岛屿分布在x轴上方,给你岛屿的坐标以及雷达的最大扫描面积,求最少用几个雷达可以将所有的岛屿覆盖!
思路:
以岛为圆心,以d为半径画圆(d是雷达的辐射半径),其与x轴相交的区间为一个区 这样就变成了在区间内找最少的点问题了
#include<iostream> #include<cmath> using namespace std; typedef struct { double l,r; }in; int cmp(const void *a, const void *b) { return (*(in *)a).l >= (*(in *)b).l ? 1:-1; } int main() { int n,d,i,x,y,sw,re,count = 1; double pre; in p[1000]; while(1) { cin>>n>>d; if(n == 0 && d==0) break; sw = 1; for(i=0;i<n;i++) { cin>>x>>y; if(d>=y&&sw==1) { p[i].l = x-sqrt((double)d*d - (double)y*y); p[i].r = x+sqrt((double)d*d - (double)y*y); } else { sw = 0; } } if(sw == 0) { cout<<"Case "<<count++<<": "<<-1<<endl; continue; } qsort(p,n,sizeof(in),cmp); re = 1; pre = p[0].r; for(i=1;i<n;i++) { if(p[i].l>pre) { re++; pre = p[i].r; } else { if(p[i].r<pre) { pre = p[i].r; } } } cout<<"Case "<<count++<<": "<<re<<endl; } return 0; }