【扩张欧几里德】POJ 1061 + zoj 2657【更新时间2011-11-18】
【扩展欧几里德】POJ 1061 + zoj 2657【更新时间2011-11-18】
http://poj.org/problem?id=1061
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1657
两题一模一样,只是无解时输出情况不同
首先由题意有【x+ms与y+ns建立等价关系,设次数为s】:
x+ms ≡ (y+ns)(mol L)
->(x+ms)%L = (y+ns)%L
->((x+ms) - (y+ns))%L = 0
->(x+ms) - (y+ns) = k*L
化简得:
k*L + (n-m)*s = x-y
令a = L,b = n-m,n = x-y得
ak + bs = n;[其中k,s为未知数,形如ax + by = n
Egcd解析:

解方程步骤:
①:令d = gcd(a, b)
②:若n%d != 0,则无解
③:方程两边同时除以d ,得到a'k + b's = n'
④:用扩展欧几里德Egcd求出a'k + b's = 1的解s
⑤:得到的[s*n']就是方程的一组解
⑥:得到最小非负整数解,模a+a模a【求b的模a,求a的模b, 为什么?自己想】
http://poj.org/problem?id=1061
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1657
两题一模一样,只是无解时输出情况不同
首先由题意有【x+ms与y+ns建立等价关系,设次数为s】:
x+ms ≡ (y+ns)(mol L)
->(x+ms)%L = (y+ns)%L
->((x+ms) - (y+ns))%L = 0
->(x+ms) - (y+ns) = k*L
化简得:
k*L + (n-m)*s = x-y
令a = L,b = n-m,n = x-y得
ak + bs = n;[其中k,s为未知数,形如ax + by = n
Egcd解析:
解方程步骤:
①:令d = gcd(a, b)
②:若n%d != 0,则无解
③:方程两边同时除以d ,得到a'k + b's = n'
④:用扩展欧几里德Egcd求出a'k + b's = 1的解s
⑤:得到的[s*n']就是方程的一组解
⑥:得到最小非负整数解,模a+a模a【求b的模a,求a的模b, 为什么?自己想】
#include <iostream> #include <algorithm> #include <string> //#include <map> #include <queue> #include <vector> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> //#include <ctime> #include <ctype.h> using namespace std; #define LL long long #define inf 0x3fffffff LL gcd (LL a, LL b) { return b ? gcd (b, a%b) : a; } void Egcd (LL a, LL b, LL &x, LL &y) { if (b == 0) { x = 1, y = 0; return ; } Egcd (b, a%b, x, y); LL tp = x; x = y; y = tp - a/b*y; } int main() { LL xx, yy, a, b, x, y, L, n, M, N, d; while (~scanf ("%lld%lld%lld%lld%lld", &xx, &yy, &M, &N, &L)) { a = L; b = N - M; n = xx - yy; d = gcd (a, b); if (n % d != 0) { puts ("Impossible"); continue; } a /= d; b /= d; n /= d; Egcd (a, b, x, y); y *= n; if (a < 0) a = -a; //周期是正的 y = (y % a + a) % a; printf ("%lld\n", y); } return 0; }