最大延续子序列和多解——HDU 1003
最大连续子序列和多解——HDU 1003
Total Submission(s): 161486 Accepted Submission(s): 37830
题意:T组数,每组一个数n,之后n个数。求n个数的最大连续子序列和与起始位置跟终点位置,如果有多个解,输出起点最小的,如有多个终点,输出终点最小的。
方法二:对前i项和进行预处理,O(n^2),超时。
方法三:分治,O(nlg(n)),可AC。
方法四:线段树,可AC。
方法五:扫一遍,累加sum, 当sum < 0 时,置sum 为0。如:
对应HDU题目:点击打开链接
Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 161486 Accepted Submission(s): 37830
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence.
If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
方法一:直接枚举。O(n^3),超时
#include <stdio.h> #include <stdlib.h> #include <string.h> #define N 100010 int a[N]; int main() { //freopen("in.txt", "r", stdin); int T, n, w = 0; int i, j, k; scanf("%d", &T); while(T--) { scanf("%d", &n); for(i=0; i<n; i++) scanf("%d", &a[i]); int max_s = -(1<<30); int sum, left, right; for(i=0; i<n; i++){ for(j=i; j<n; j++){ sum = 0; for(k=i; k<=j; k++) sum += a[k]; if(sum > max_s){ max_s = sum; left = i; right = j; } } } printf("Case %d:\n%d %d %d\n", ++w, max_s, left + 1, right + 1); if(T) printf("\n"); } return 0; }
方法二:对前i项和进行预处理,O(n^2),超时。
#include <stdio.h> #include <stdlib.h> #include <string.h> #define N 100010 int a[N]; int sum[N]; int main() { //freopen("in.txt", "r", stdin); int T, n, w = 0; int i, j, k; scanf("%d", &T); while(T--) { memset(sum, 0, sizeof(sum)); scanf("%d", &n); for(i=1; i<=n; i++){ scanf("%d", &a[i]); sum[i] = sum[i-1] + a[i]; } int max_s = -(1<<30); int s, left, right; for(i=1; i<=n; i++){ for(j=i; j<=n; j++){ s = sum[j] - sum[i-1]; if(s > max_s){ max_s = s; left = i; right = j; } } } printf("Case %d:\n%d %d %d\n", ++w, max_s, left, right); if(T) printf("\n"); } return 0; }
方法三:分治,O(nlg(n)),可AC。
#include <stdio.h> #include <stdlib.h> #include <string.h> #define N 100010 int a[N]; typedef struct NODE { int val, l, r; }Node; Node Max_Ans(int *A, int l, int r) { Node t; if(1 == r - l){ t.val = A[l]; t.l = l; t.r = l; return t; } Node t1, t2, t3; int mid = l + (r - l) / 2; t1 = Max_Ans(A, l, mid); t2 = Max_Ans(A, mid, r); if(t1.val >= t2.val) t = t1; else t = t2; int i, v, L, R; v = 0; L = A[mid -1]; t3.l = mid - 1; for(i=mid-1; i>=l; i--){ v += A[i]; if(v >= L){ L = v; t3.l = i; } } v = 0; R = A[mid]; t3.r = mid; for(i=mid; i<r; i++){ v += A[i]; if(v > R){ R = v; t3.r = i; } } t3.val = L + R; if(t3.val >= t.val) t = t3; return t; } int main() { //freopen("in.txt", "r", stdin); int T, w = 0; int n; Node max_s; int i, k; scanf("%d", &T); while(T--) { scanf("%d", &n); for(i=0; i<n; i++){ scanf("%d", &a[i]); } max_s = Max_Ans(a, 0, n); printf("Case %d:\n%d %d %d\n", ++w, max_s.val, max_s.l + 1, max_s.r + 1); if(T) printf("\n"); } return 0; }
方法四:线段树,可AC。
#include <stdio.h> #include <stdlib.h> #include <string.h> #define ms(x,y) memset(x,y,sizeof(x)) #define MAX(x,y) ((x)>(y)?(x):(y)) #define LL long long const int MAXN=100000+10; const int INF=1<<30; using namespace std; int sum[MAXN<<2]; int msum[MAXN<<2]; int lsum[MAXN<<2]; int rsum[MAXN<<2]; int ll[MAXN<<2]; int lr[MAXN<<2]; int ml[MAXN<<2]; int mr[MAXN<<2]; int rl[MAXN<<2]; int rr[MAXN<<2]; void up(int root) { int lroot = root<<1; int rroot = root<<1|1; sum[root] = sum[lroot] + sum[rroot]; lsum[root] = lsum[lroot]; rsum[root] = rsum[rroot]; //维护前缀 ll[root] = ll[lroot]; lr[root] = lr[lroot]; int sl = sum[lroot] + lsum[rroot]; if(sl > lsum[root]){ lsum[root] = sl; lr[root] = lr[rroot]; } //维护后缀 rl[root] = rl[rroot]; rr[root] = rr[rroot]; int sr = sum[rroot] + rsum[lroot]; if(sr >= rsum[root]){ rsum[root] = sr; rl[root] = rl[lroot]; } //维护区间最值 ml[root] = ml[lroot]; mr[root] = mr[lroot]; msum[root] = msum[lroot]; if(msum[root] < rsum[lroot] + lsum[rroot]){ msum[root] = rsum[lroot] + lsum[rroot]; ml[root] = rl[lroot]; mr[root] = lr[rroot]; } if(msum[root] < msum[rroot]){ msum[root] = msum[rroot]; ml[root] = ml[rroot]; mr[root] = mr[rroot]; } } void Build(int root, int left, int right) { if(left == right){ scanf("%d", &sum[root]); lsum[root] = sum[root]; ll[root] = left; lr[root] = right; msum[root] = sum[root]; ml[root] = left; mr[root] = right; rsum[root] = sum[root]; rl[root] = left; rr[root] = right; return; } int mid = (left + right)>>1; Build(root<<1, left, mid); Build(root<<1|1, mid+1, right); up(root); } struct Node { int msum, lsum, rsum, sum; int ll, lr, ml, mr, rl, rr; }; Node query(int root, int left, int right, int l, int r) { if(l == left && right == r){ Node N; N.sum = sum[root]; N.msum = msum[root]; N.lsum = lsum[root]; N.rsum = rsum[root]; N.ll = ll[root]; N.lr = lr[root]; N.ml = ml[root]; N.mr = mr[root]; N.rl = rl[root]; N.rr = rr[root]; return N; } int mid = (left + right)>>1; Node res,res1,res2; int lroot = root<<1; int rroot = root<<1|1; int markl = 0, markr = 0; if(r <= mid) return res = query(lroot, left, mid, l, r); if(l > mid) return res2 = query(rroot, mid+1, right, l, r); else{ res = query(lroot, left, mid, l, mid); res2 = query(rroot, mid+1, right, mid+1, r); res1.sum = res.sum + res2.sum; res1.lsum = res.lsum; res1.rsum = res2.rsum; res1.ll = res.ll; res1.lr = res.lr; LL sl = res.sum + res2.lsum; if(sl > res1.lsum){ res1.lsum = sl; res1.lr = res2.lr; } res1.rl = res2.rl; res1.rr = res2.rr; LL sr = res2.sum + res.rsum; if(sr >= res1.rsum){ res1.rsum = sr; res1.rl = res.rl; } res1.msum = res.msum; res1.ml = res.ml; res1.mr = res.mr; if(res1.msum < res.rsum + res2.lsum){ res1.msum = res.rsum + res2.lsum; res1.ml = res.rl; res1.mr = res2.lr; } if(res1.msum < res2.msum){ res1.msum = res2.msum; res1.ml = res2.ml; res1.mr = res2.mr; } return res1; } } int main() { //freopen("in.txt", "r", stdin); int T, n, w = 0; int i, j, k; Node max_s; scanf("%d", &T); while(T--) { scanf("%d", &n); Build(1, 1, n); max_s = query(1, 1, n, 1, n); printf("Case %d:\n%d %d %d\n", ++w, max_s.msum, max_s.ml, max_s.mr); if(T) printf("\n"); } return 0; }
方法五:扫一遍,累加sum, 当sum < 0 时,置sum 为0。如:
-1 5 7 -9 2 -7 -2 1 3 可分成
-1 | 5 12 3 5 | -7 | -2 | 1 4
竖线为分界。比较每个区间,取最大值。
思路来自:http://blog.****.net/hcbbt/article/details/10454947
#include <stdio.h> #include <stdlib.h> #include <string.h> int main() { //freopen("in.txt", "r", stdin); int T, w = 0; int n, num; int beg, end, max_s, tmp; int i, k; scanf("%d", &T); while(T--) { scanf("%d", &n); max_s = -(1<<30); tmp = 0; beg = end = k = 1; for(i=1; i<=n; i++){ scanf("%d", &num); tmp += num; if(tmp > max_s){ max_s = tmp; beg = k; end = i; } if(tmp < 0){ tmp = 0; k = i + 1; } } printf("Case %d:\n%d %d %d\n", ++w, max_s, beg, end); if(T) printf("\n"); } return 0; }