多线程丶 多线程核心概念 三种方式创建线程 静态代理模式 Lamda表达式 线程状态 线程方法 停止线程 线程休眠 线程礼让 线程强制执行 检测线程状态 线程优先级 守护线程 线程同步 同步方法 CopyOnWriteArrayList 死锁 Lock Lock与synchronized对比 线程通信 线程池 三种线程启动方式
- 线程就是独立的执行路径
- 在程序运行时,即使没有自己创建线程,后台也会有多个线程,如主线程(用户线程)、gc线程(守护线程)
- main()称之为主线程,为系统的入口,用于执行整个程序
- 在一个进程中,如果开辟了多个线程,线程的运行由调度器安排调度,调度器是与操作系统紧密相关的,先后顺序是不能人为干预的
- 对同一份资源操作时,会存在资源抢夺的问题,需要加入并发控制
- 线程会带来额外的开销,如CPU调度时间、并发控制的开销
- 每个线程在自己的工作内存交互,内存控制不当会造成数据不一致
三种方式创建线程
在线Jdk8文档搜Thread
继承Thread类(不建议使用,OOP单继承局限性)
官方文档案例
class PrimeThread extends Thread {
long minPrime;
PrimeThread(long minPrime) {
this.minPrime = minPrime;
}
public void run() {
// compute primes larger than minPrime
. . .
}
}
//然后,以下代码将创建一个线程并启动它运行:
PrimeThread p = new PrimeThread(143);
p.start();//Thread风格启动
练习案例一
public class TestThread1 extends Thread {
@Override
public void run() {
for (int i = 0; i < 20; i++) {
System.out.println("我在看代码~~~~~~~" + i);
}
}
public static void main(String[] args) {
//main线程,主线程
//创建一个线程对象
TestThread1 testThread1 = new TestThread1();
testThread1.start();//线程开启不一定立即执行,由cpu调度
for (int i = 0; i < 200; i++) {
System.out.println("我在学习多线程~~~~" + i);
}
//执行效果:主线程和创建的线程穿插着执行
}
}
练习案例二(Jar包)
import org.apache.commons.io.FileUtils;
import java.io.File;
import java.io.IOException;
import java.net.URL;
//练习Thread,实现多线程同步下载图片
public class TestThread2 extends Thread {
private String url;//下载地址
private String name;//文件名
public TestThread2(String url,String name) {
this.url = url;
this.name = name;
}
//线程执行体
@Override
public void run() {
WebDownloader webDownloader = new WebDownloader();
webDownloader.downloader(url, name);
System.out.println("下载了文件名为:"+name+"的文件");
}
public static void main(String[] args) {
TestThread2 t1 = new TestThread2("https://img2020.cnblogs.com/blog/874710/202010/874710-20201027164829816-1026952085.png", "1026952085.png");
TestThread2 t2 = new TestThread2("https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/732720a8702e414daa38542eddd44519~tplv-k3u1fbpfcp-zoom-1.image", "zoom-1.image");
TestThread2 t3 = new TestThread2("https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/4c2617fe68944ac08a37f3b5b4c15b09~tplv-k3u1fbpfcp-zoom-1.image", "zoom-2.image");
//同时下载图片 不一样的图片
t1.start();
t2.start();
t3.start();
}
}
class WebDownloader{
public void downloader(String url,String name) {
try {
FileUtils.copyURLToFile(new URL(url),new File(name));//下载到项目根目录
} catch (IOException e) {
e.printStackTrace();
System.out.println("IO异常,downloader方法出现问题");
}
}
}
实现Runnable接口(推荐)
官方文档案例
class PrimeRun implements Runnable {
long minPrime;
PrimeRun(long minPrime) {
this.minPrime = minPrime;
}
public void run() {
// compute primes larger than minPrime
. . .
}
}
// 然后,以下代码将创建一个线程并启动它运行:
PrimeRun p = new PrimeRun(143);
new Thread(p).start();//runnable风格启动
练习案例
public class TestThread3 implements Runnable {
@Override
public void run() {
for (int i = 0; i < 20; i++) {
System.out.println("我在看代码~~~~~~~" + i);
}
}
public static void main(String[] args) {
TestThread3 testThread3 = new TestThread3();
new Thread(testThread3).start();//代理
for (int i = 0; i < 200; i++) {
System.out.println("我在学习多线程~~~~" + i);
}
}
}
练习案例二
public class TestThread2 implements Runnable {
private String url;//下载地址
private String name;//文件名
public TestThread2(String url,String name) {
this.url = url;
this.name = name;
}
//线程执行体
@Override
public void run() {
WebDownloader webDownloader = new WebDownloader();
webDownloader.downloader(url, name);
System.out.println("下载了文件名为:"+name+"的文件");
}
public static void main(String[] args) {
TestThread2 t1 = new TestThread2("https://img2020.cnblogs.com/blog/874710/202010/874710-20201027164829816-1026952085.png", "1026952085.png");
TestThread2 t2 = new TestThread2("https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/732720a8702e414daa38542eddd44519~tplv-k3u1fbpfcp-zoom-1.image", "zoom-1.image");
TestThread2 t3 = new TestThread2("https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/4c2617fe68944ac08a37f3b5b4c15b09~tplv-k3u1fbpfcp-zoom-1.image", "zoom-2.image");
new Thread(t1).start();
new Thread(t2).start();
new Thread(t3).start();
}
}
class WebDownloader{
public void downloader(String url,String name) {
try {
FileUtils.copyURLToFile(new URL(url),new File(name));//下载到项目根目录
} catch (IOException e) {
e.printStackTrace();
System.out.println("IO异常,downloader方法出现问题");
}
}
}
练习案例三(多个线程操作同一个资源(线程不安全))
public class TestThread4 implements Runnable{
private int ticket = 10;
@Override
public void run() {
while (true) {
if(ticket<=0){
break;
}
//模拟延时
try {
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+"-->拿到了第"+ticket--+"票");
}
}
public static void main(String[] args) {
TestThread4 testThread4 = new TestThread4();
new Thread(testThread4,"小明").start();
new Thread(testThread4,"老师").start();
new Thread(testThread4,"黄牛党").start();
}
}
案例练习四
public class TestThread5 implements Runnable{
//胜利者
public static String winner;
@Override
public void run() {
for (int i = 0; i <= 100; i++) {
//模拟兔子睡觉
if (Thread.currentThread().getName().equals("兔子") && i % 10 == 0) {
try {
Thread.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//判断比赛是否结束
if (gameover(i)) {
break;
}
System.out.println(Thread.currentThread().getName()+"-->跑了"+i+"米");
}
}
//比赛是否结束
public boolean gameover(int steps){
if (null != winner) {
return true;
}else{
if (steps >= 100) {
winner = Thread.currentThread().getName();
System.out.println("winner is:" + winner);
return true;
}
}
return false;
}
public static void main(String[] args) {
TestThread5 testThread5 = new TestThread5();
new Thread(testThread5,"兔子").start();
new Thread(testThread5,"乌龟").start();
}
}
实现Callable接口
- 实现Callable接口,需要返回值类型
- 重写call方法,需要抛出异常
- 创建目标对象
- 创建执行服务:ExecutorService ser = Executors.newFixedThreadPool(3);
- 提交执行:Future
r1 = ser.submit(t1); - 获取结果:Boolean rs1 = r1.get();
- 关闭服务:ser.shutdown();
案例
public class TestThread6 implements Callable<Boolean> {
private String url;//下载地址
private String name;//文件名
public TestThread6(String url,String name) {
this.url = url;
this.name = name;
}
@Override
public Boolean call() throws Exception {
WebDownloader webDownloader = new WebDownloader();
webDownloader.downloader(url, name);
System.out.println("下载了文件名为:"+name+"的文件");
return true;
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
TestThread6 t1 = new TestThread6("https://img2020.cnblogs.com/blog/874710/202010/874710-20201027164829816-1026952085.png", "1026952085.png");
TestThread6 t2 = new TestThread6("https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/732720a8702e414daa38542eddd44519~tplv-k3u1fbpfcp-zoom-1.image", "zoom-1.image");
TestThread6 t3 = new TestThread6("https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/4c2617fe68944ac08a37f3b5b4c15b09~tplv-k3u1fbpfcp-zoom-1.image", "zoom-2.image");
//创建执行服务
ExecutorService ser = Executors.newFixedThreadPool(3);
//提交执行
Future<Boolean> r1 = ser.submit(t1);
Future<Boolean> r2 = ser.submit(t2);
Future<Boolean> r3 = ser.submit(t3);
//获取结果
Boolean rs1 = r1.get();
Boolean rs2 = r2.get();
Boolean rs3 = r3.get();
//关闭服务
ser.shutdown();
}
}
class WebDownloader{
public void downloader(String url,String name) {
try {
FileUtils.copyURLToFile(new URL(url),new File(name));//下载到项目根目录
} catch (IOException e) {
e.printStackTrace();
System.out.println("IO异常,downloader方法出现问题");
}
}
}
静态代理模式
public class StaticProxy {
public static void main(String[] args) {
WeddingCompany weddingCompany = new WeddingCompany(new You());
weddingCompany.happyMarry();
}
}
interface Marry{//首先,接口定义规则是没有问题的
void happyMarry();
}
class You implements Marry {//实现结婚的接口也是正常思维
@Override
public void happyMarry() {
System.out.println("结婚超开心!");
}
}
/**
* 代理对象的套路是,它搞一个构造函数来接收真是结婚对象
* 同时它又继承同样的结婚接口,而要做的是在实现结婚方法的过程中做文章
*/
class WeddingCompany implements Marry{
private Marry target;
public WeddingCompany(Marry target) {
this.target = target;
}
@Override
public void happyMarry() {
before();
this.target.happyMarry();
after();
}
private void after() {
System.out.println("开心回家");
}
private void before() {
System.out.println("布置婚礼");
}
}
类比
new Thread(() ->System.out.println("我爱你")).start();
//Thread实现了Runnable接口,而它构造函数接收的对象也实现了Runnable接口
Lamda表达式
- 避免匿名内部类定义过多
- 函数式编程
如果某个接口只包含了一个抽象方法,那么它就是一个函数式接口,我们可以通过Lamda表达式来创建该接口的对象。
进化(推导)过程
public class TestLamda {
//2、静态内部类
static class ILike2 implements ILike {
@Override
public void lamda(int x) {
System.out.println("i like lamda " + x);
}
}
public static void main(String[] args) {
ILike like = new Like();
like.lamda(1);
like = new ILike2();
like.lamda(2);
//3、局部内部类
class ILike3 implements ILike {
@Override
public void lamda(int x) {
System.out.println("i like lamda " + x);
}
}
like = new ILike3();
like.lamda(3);
//4、匿名内部类
like = new ILike() {
@Override
public void lamda(int x) {
System.out.println("i like lamda " + x);
}
};
like.lamda(4);
//5、Lamda表达式(基于这个接口是函数时接口,只有一个方法)
like = (int x) -> {
System.out.println("i like lamda " + x);
};
like.lamda(5);
//6、继续简化:去掉参数类型
like = (x) -> {
System.out.println("i like lamda " + x);
};
like.lamda(6);
//7、继续简化:去掉括号(前提是参数只有一个)
like = x -> {
System.out.println("i like lamda " + x);
};
like.lamda(7);
//8、继续简化:去掉大括号(前提是大括号中只有一行)
like = x -> System.out.println("i like lamda " + x);
like.lamda(8);
}
}
//定义一个函数式接口
interface ILike {
void lamda(int x);
}
//1、实现类
class Like implements ILike {
@Override
public void lamda(int x) {
System.out.println("i like lamda " + x);
}
}
线程状态
Jdk中是6种:NEW、WAITING、TIMED_WAITING、RUNNABLE、BLOCKED、TERMINATED
(没有列到Jdk中的状态估计是底层C++的,不需要Java参与的吧?running、ready)
线程方法
- setPriority(int newPrority)优先级
- static void sleep(long millis)阻塞状态,抛出InterruptedException异常
- void join()插队,InterruptedException异常
- static void yield()暂停当前正在执行的线程对象,并执行其他线程
- void interrupt()中断线程(别用这个)
- boolean isAlive()知死活
停止线程
不要使用Jdk提供的stop()和destroy()方法,推荐线程自己停止下来:用标志位实现
public class TestStop implements Runnable{
boolean flag = true;
@Override
public void run() {
while (flag) {
System.out.println("run …… Thread");
}
}
public void stop() {
this.flag = false;
}
public static void main(String[] args) {
TestStop testStop = new TestStop();
new Thread(testStop).start();
//上面是用户线程就绪,交给cpu调度。下面是主线程要做的工作
for (int i = 0; i <= 100; i++) {
System.out.println("主线程--->"+i);
if (100 == i) {
System.out.println("主线程 即将把 用户线程 停止掉");
testStop.stop();
}
}
}
}
线程休眠
- sleep(时间)指定当前线程阻塞的毫秒数
- sleep存在异常InterruptedException
- sleep时间达到后线程进入就绪状态
- sleep可以模拟网络延时倒计时等
- 每一个对象都有一个锁,sleep不会释放锁
线程礼让
- 让当前正在执行的线程暂停,但不阻塞
- 将线程从运行状态转为就绪状态
- 让CPU重新调度,礼让不一定成功,看CPU心情
public class TestYield {
public static void main(String[] args) {
MyYield myYield = new MyYield();
new Thread(myYield,"a").start();
new Thread(myYield,"b").start();
}
}
class MyYield implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"-->开始执行");
Thread.yield();//礼让
System.out.println(Thread.currentThread().getName()+"-->停止执行");
}
}
线程强制执行
join插队,会让其他线程阻塞,别用这玩意
public class TestJoin implements Runnable{
@Override
public void run() {
for (int i = 0; i < 10000; i++) {
System.out.println("用户线程正在执行~");
}
}
public static void main(String[] args) throws InterruptedException {
TestJoin testJoin = new TestJoin();
Thread thread = new Thread(testJoin);
thread.start();
for (int i = 0; i < 500; i++) {
if (200 == i) {
thread.join();//用户线程插队,主线程阻塞,等vip跑完了才就绪执行
}
System.out.println("主线程--->" + i);
}
}
}
检测线程状态
两个Thread.sleep()的受体不一样!
这里发现个问题,sleep后没有进入BLOCKED状态啊,不是说要进入阻塞状态吗
public class TestThreadState {
public static void main(String[] args) throws InterruptedException {
Thread thread = new Thread(() -> {
for (int i = 0; i < 5; i++) {
try {
Thread.sleep(1000);//用户线程等待1s 其间为TIMED_WAITING状态
System.out.println(Thread.currentThread().getName()+"<---用户线程");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("------------------");
});
//观察状态
Thread.State state = thread.getState();
System.out.println(state);
//观察启动后的状态
thread.start();
state = thread.getState();
System.out.println(state);
while (state != Thread.State.TERMINATED) {//如果用户线程没有死掉,主线程等100ms,打印用户线程状态
Thread.sleep(100);
System.out.println(Thread.currentThread().getName()+"<---主线程");
state = thread.getState();
System.out.println(state);
}
}
}
线程优先级
-
Java提供一个线程调度器来监控进入就绪状态后的所有线程,按照优先级进行调度
-
优先级1-10:(影响的是概率)
- MIN_PRIORITY = 1
- NORM_PRIORITY = 5
- MAX_PRIORITY = 10
-
方法:setPriority、getPriority
public class TestPriority {
public static void main(String[] args) {
System.out.println(Thread.currentThread().getName() + "---->" + Thread.currentThread().getPriority());
MyPriority myPriority = new MyPriority();
Thread t1 = new Thread(myPriority);
Thread t2 = new Thread(myPriority);
Thread t3 = new Thread(myPriority);
Thread t4 = new Thread(myPriority);
Thread t5 = new Thread(myPriority);
Thread t6 = new Thread(myPriority);
t1.start();
t2.setPriority(1);
t2.start();
t3.setPriority(4);
t3.start();
t4.setPriority(Thread.MAX_PRIORITY);
t4.start();
t5.setPriority(8);
t5.start();
t6.setPriority(7);
t6.start();
}
}
class MyPriority implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + "---->" + Thread.currentThread().getPriority());
}
}
守护线程
daemon
- 线程分为用户线程和守护线程
- 虚拟机必须确保用户线程执行完毕
- 虚拟机不用等待守护线程执行完毕
- 如,后台记录日志,监控内存,垃圾回收等
public class TestDaemon {
public static void main(String[] args) {
God god = new God();
You you = new You();
Thread thread = new Thread(god);
thread.setDaemon(true);
thread.start();
new Thread(you).start();
}
}
class God implements Runnable {
@Override
public void run() {
while (true) {
System.out.println("上帝保佑着你");
}
}
}
class You implements Runnable {
@Override
public void run() {
for (int i = 0; i < 36500; i++) {
System.out.println("你一生都开心的活着");
}
System.out.println("-----goodbay world");
}
}
线程同步
- 当一个线程获得对象的排他锁,独占资源,其他线程必须等待
- 一个线程持有锁,会导致其他所有需要此锁的线程挂起
- 在多线程竞争下,加锁、释放锁会导致比较多的上下文切换和调度延时,引起性能问题
- 如果一个优先级高的线程等待一个优先级低的线程释放锁,会导致优先级倒置,引起性能问题
案例:线程不安全的购票(buy方法加synchronized解决)
public class UnSafeBuyTicket {
public static void main(String[] args) {
BuyTicket buyTicket = new BuyTicket();
new Thread(buyTicket, "苦逼的我").start();
new Thread(buyTicket, "牛逼的你们").start();
new Thread(buyTicket, "可恶的黄牛党").start();
}
}
class BuyTicket implements Runnable {
private int ticketNums = 10;
boolean flag = true;
@Override
public void run() {
while (flag) {
try {
buy();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
private void buy() throws InterruptedException {
if (ticketNums <= 0) {
flag = false;
return;
}
Thread.sleep(100);
System.out.println(Thread.currentThread().getName() + "买到" + ticketNums--);
}
}
案例:线程不安全的银行(解决方法:run方法中的内容都放到synchronized (account) {}代码块中,要操作account所以所著它)
public class UnsafeBank {
public static void main(String[] args) {
Account account = new Account(100, "结婚基金");
Drawing you = new Drawing(account, 50, "你");
Drawing girlFriend = new Drawing(account, 100, "girlFriend");
you.start();
girlFriend.start();
}
}
//银行 模拟取款
class Drawing extends Thread{
Account account;//账户
int drawingMoney;//取了多少钱
int nowMoney;//现在手里有多少钱
public Drawing(Account account, int drawingMoney, String name) {
super(name);//给线程设置名字
this.account = account;
this.drawingMoney = drawingMoney;
}
//取钱
@Override
public void run() {
//判断有没有钱
if (account.money - drawingMoney < 0) {
System.out.println(Thread.currentThread().getName() + "钱不够,取不了");
return;
}
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
//卡内余额=卡内余额 - 取的钱
account.money = account.money - drawingMoney;
//你的手里的钱
nowMoney = nowMoney + drawingMoney;
System.out.println(account.name + "余额为:" + account.money);
//因为继承关系,this.getName()就是Thread.currentThread().getName()
System.out.println(this.getName()+"手里的钱"+nowMoney);
}
}
class Account{
int money;//余额
String name;//卡名
public Account(int money, String name) {
this.money = money;
this.name = name;
}
}
案例:线程不安全的集合(解决方法:操作集合之前先将它锁住synchronized (strings) {})
import java.util.ArrayList;
public class UnSafeList {
public static void main(String[] args) throws InterruptedException {
ArrayList<String> strings = new ArrayList<>();
for (int i = 0; i < 10000; i++) {
new Thread(()->{
strings.add(Thread.currentThread().getName());
//问题出在可能会有多个线程同时给集合中的某一项赋值 add了10000次实际却不足10000项
}).start();
}
Thread.sleep(3000);
System.out.println(strings.size());
}
}
同步方法
Synchronized方法和Synchronized块
-
同步块:synchronized(Obj){},Obj称之为同步监视器(Obj可以是任何对象,但是推荐使用共享资源作为同步监视器)
-
若一个大的方法声明为Synchronized将会影响效率
-
同步方法中无需指定同步监视器,因为同步方法的同步监视器就是this,就是这个对象本身,或者class
-
同步监视器的执行过程:
- 第一个线程访问,锁定同步监视器,执行其中代码
- 第二个线程访问,发现同步监视器被锁定,无法访问
- 第一个线程访问完毕,解锁同步监视器
- 第二个线程访问,发现同步监视器没有锁,然后锁定并访问
CopyOnWriteArrayList
import java.util.concurrent.CopyOnWriteArrayList;
//测试JUC安全类型集合 CopyOnWriteArrayList
public class TestJUC {
public static void main(String[] args) {
CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<>();
for (int i = 0; i < 10000; i++) {
new Thread(() -> {
list.add(Thread.currentThread().getName());
}).start();
}
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(list.size());
}
}
死锁
产生死锁的4个必要条件(干掉其中任一条件即可消除死锁)
- 互斥条件:一个资源每次只能被一个进程使用
- 请求与保持条件:一个资源因请求资源而阻塞时,对已获得的资源保持不放
- 不剥夺条件:进程已获得资源,在未使用完之前,不能强行剥夺
- 循环等待条件:若干线程之间形成一种头尾相接的循环等待资源的关系
案例(解决办法:调整synchronized位置)
//死锁:多个线程相互抱着对方的资源,形成僵持
public class DeadLock {
public static void main(String[] args) {
Makeup g1 = new Makeup(0, "灰姑凉");
Makeup g2 = new Makeup(1, "白雪公主");
g1.start();
g2.start();
}
}
//口红
class Lapstick{
}
//镜子
class Mirror{
}
//化妆
class Makeup extends Thread {
//需要的资源
static Lapstick lapstick = new Lapstick();
static Mirror mirror = new Mirror();
int choice;//选择
String girlName;
public Makeup(int choice, String girlName) {
this.choice = choice;
this.girlName = girlName;
}
@Override
public void run() {
try {
makeup();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public void makeup() throws InterruptedException {
if (0 == choice) {
synchronized (lapstick) {
System.out.println(this.girlName + "获得口红的锁");
Thread.sleep(1000);
synchronized (mirror) {
System.out.println(this.girlName + "获得镜子的锁");
}
}
}else{
synchronized (mirror) {
System.out.println(this.girlName + "获得镜子的锁");
Thread.sleep(2000);
synchronized (lapstick) {
System.out.println(this.girlName + "获得口红的锁");
}
}
}
}
}
Lock
JUC并发编程下的类
- 显示定义同步锁对象来实现线程同步
- java.util.concurrent.locks.Lock接口是控制多个线程对共享资源进行访问的工具
- ReentrantLock类(可重入锁)实现了Lock,在实现线程安全的控制中较为常用
案例
import java.util.concurrent.locks.ReentrantLock;
public class TestLock {
public static void main(String[] args) {
TestLock2 testLock2 = new TestLock2();
new Thread(testLock2).start();
new Thread(testLock2).start();
new Thread(testLock2).start();
}
}
class TestLock2 implements Runnable{
int ticketNums = 10;
private final ReentrantLock lock = new ReentrantLock();
@Override
public void run() {
while(true){
/*未加锁之前
* lock.lock();
if (ticketNums > 0) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(ticketNums--);
}else{
break;
}
* */
try{
lock.lock();
if (ticketNums > 0) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(ticketNums--);
}else{
break;
}
}finally {
lock.unlock();
}
}
}
}
Lock与synchronized对比
- Lock是显式锁(手动开启和关闭)synchronized是隐式锁,出了作用域自动释放
- Lock只有代码块锁,synchronized有代码块和方法锁
- 使用Lock锁,JVM将花费较少的时间来调度线程,性能更好。并且具有更好的扩展性(提供更多的子类)
- 优先使用顺序:Lock>同步代码块(已进入了方法体,分配了相应资源)>同步方法(在方法体之外)
线程通信
应用场景(生产者和消费者问题)
线程通信的方法
- wait()表示线程一直等待,直到其他线程通知,与sleep不同,会释放锁
- wait(long timeout)指定等待的毫秒数
- notify()唤醒一个处于等待状态的线程
- notifyAll()唤醒同一个对象上所有调用wait()方法的线程,优先级别高的线程优先调度
均是Object类的方法,都只能在同步方法或同步代码块中使用,否则会抛出异常IllegalMonitorStateException
方案一:管程法
//测试:生产者消费者模型-->利用缓冲区解决:管程法
//生产者 消费者 产品 缓冲区
public class TestPC {
public static void main(String[] args) {
SynContainer synContainer = new SynContainer();
new Product(synContainer).start();
new Consumer(synContainer).start();
}
}
class Product extends Thread {
SynContainer synContainer;
public Product(SynContainer synContainer) {
this.synContainer = synContainer;
}
@Override
public void run() {
for (int i = 0; i < 100; i++) {
synContainer.push(new Chicken(i));
System.out.println("生产了" + i + "只鸡");
}
}
}
class Consumer extends Thread {
SynContainer synContainer;
public Consumer(SynContainer synContainer) {
this.synContainer = synContainer;
}
@Override
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("消费了" + synContainer.pop().id + "只鸡");
}
}
}
class Chicken {
int id;
public Chicken(int id) {
this.id = id;
}
}
//缓冲区
class SynContainer {
//需要一个容器大小
Chicken[] chickens = new Chicken[10];
//容器计数器
int count = 0;
//生产者放入产品
public synchronized void push(Chicken chicken) {
//如果容器满了,需等待消费者消费
if (count == chickens.length) {
//通知消费者消费,生产者等待
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果没有满,丢入产品
chickens[count] = chicken;
count++;
//通知消费者消费
this.notifyAll();
} //消费者消费产品
public synchronized Chicken pop() {
//判断是否能消费
if (count == 0) {
//等待生产者生产,消费者等待
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果可以消费
count--;
Chicken eat = chickens[count];
//吃完了,通知生产者生产
this.notifyAll();
return eat;
}
}
方案二:信号灯法
//生产者消费者问题 信号灯法 标志位解决
public class TestPC2 {
public static void main(String[] args) {
TV tv = new TV();
new Player(tv).start();
new Watcher(tv).start();
}
}
//生产者:演员
class Player extends Thread {
TV tv;
public Player(TV tv) {
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
if (i % 2 == 0) {
this.tv.play("快乐大本营播放中");
} else {
this.tv.play("抖音:记录美好生活");
}
}
}
}
//消费者:观众
class Watcher extends Thread {
TV tv;
public Watcher(TV tv) {
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
tv.watch();
}
}
}
//产品:节目
class TV {
String voice;
boolean flag = true;
public synchronized void play(String voice) {
if (!flag) {
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("演员表演了" + voice);
this.notifyAll();
this.voice = voice;
this.flag = !this.flag;
}
public synchronized void watch() {
if (flag) {
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("观看了:" + voice);
this.notifyAll();
this.flag = !this.flag;
}
}
线程池
-
提高响应速度(减少创建新线程的时间)
-
降低资源消耗(重福利用线程池中的线程,不需要每次创建)
-
便于线程管理
- corePoolSize核心线程池大小
- maximumPoolSize最大线程数
- keepAliveTime线程没有任务时最多保持多上时间后会终止
-
Jdk5起提供了线程池相关API:ExecutorService和Executors
-
ExecutorService线程池接口,常见子类ThreadPoolExecutor
- void execute(Runnable command):执行任务/命令,没有返回值,一般用来执行Runnable
Future submit(Callable task):执行任务,有返回值,一般用来执行Callable - void shutdown():关闭连接池
-
Executors:工具类、线程池的工厂类、用于创建并返回不同类型的线程池
练习
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class TestPool {
public static void main(String[] args) {
//创建线程池服务 创建线程池 参数为线程池大小
ExecutorService service = Executors.newFixedThreadPool(10);
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
//关闭连接
service.shutdown();
}
}
class MyThread implements Runnable {
@Override
public void run() {
System.out.println(Thread.currentThread().getName());
}
}
三种线程启动方式
练习
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
public class ThreadNew {
public static void main(String[] args) {
new MyThread1().start();
new Thread(new MyThread2()).start();
FutureTask<Integer> task = new FutureTask<>(new MyThread3());
new Thread(task).start();
//打印返回值
try {
Integer integer = task.get();
System.out.println(integer);
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
}
class MyThread1 extends Thread{
@Override
public void run() {
System.out.println("继承Thread方式");
}
}
class MyThread2 implements Runnable{
@Override
public void run() {
System.out.println("实现Runnable接口方法");
}
}
class MyThread3 implements Callable<Integer>{
@Override
public Integer call() throws Exception {
System.out.println("实现Callable接口方式");
return 100;
}
}