cross-entropy(交叉熵)

熵其实是信息量的期望值,它是一个随机变量的确定性的度量。熵越大,变量的取值越不确定,反之就越确定

参考链接:https://blog.****.net/rtygbwwwerr/article/details/50778098

交叉熵是一个在ML领域经常会被提到的名词。在这篇文章里将对这个概念进行详细的分析。

1.什么是信息量?

假设I值也非常的低。

2.什么是熵?

那么什么又是熵呢?还是通过上边的例子来说明,假设小明的考试结果是一个0-1分布熵越大,变量的取值越不确定,反之就越确定。

对于一个随机变量X而言,它的所有可能取值的信息量的期望( 
可以看出,当两种取值的可能性相等时,不确定度最大(此时没有任何先验知识),这个结论可以推广到多种取值的情况。在图中也可以看出,当p=0或1时,熵为0,即此时X完全确定。 
熵的单位随着公式中log运算的底数而变化,当底数为2时,单位为“比特”(bit),底数为e时,单位为“奈特”。

3.什么是相对熵?

cross-entropy(交叉熵)

4. 什么是交叉熵?

cross-entropy(交叉熵)