#coding=utf-8
import h5py
import numpy as np
import caffe
#1.导入数据
filename = 'testdata.h5'
f = h5py.File(filename, 'r')
n1 = f.get('data')
n1 = np.array(n1)
print n1[0]
n2=f.get( 'label_1d')
n2 = np.array(n2)
f.close()
#2.导入模型与网络
deploy='gesture_deploy.prototxt' #deploy文件
caffe_model= 'iter_iter_1000.caffemodel' #训练好的 caffemodel
net = caffe.Net(deploy,caffe_model,caffe.TEST)
count=0 #统计预测值和标签相等的数量
t=1000 #t:样本的数量
for i in range(t):
#数据处理
tempdata=n1[i,0:63]
tempdata = np.reshape([[tempdata]], (1,1,63))
tempdata= tempdata.astype(np.float32)
net.blobs['data'].data[0] = tempdata
#预测
out = net.forward()
output = out['outputs']
result= np.where(output==np.max(output))
predi=result[1][0]
#判断predi与label是否相等,并统计
label = n2[i, 0]
if predi==(label):
count=count+1
kk=[predi,label]
print kk
print count