poj-2955-Brackets-区间DP
poj-2955-Brackets-区间DP
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 9014 | Accepted: 4829 |
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((())) ()()() ([]]) )[)( ([][][) end
Sample Output
6 6 4 0 6
Source
一开始使用code2,找到总的pair数量再*2,以为就解决了。但是wrong answer,不知道本code的方法错在哪里?
使用了区间DP,方法参考自: http://www.cnblogs.com/kuangbin/archive/2013/04/29/3051402.html
2955 | Accepted | 472K | 47MS | G++ | 858B | 2017-09-16 11:12:08 |
#include <cstdio> #include <cstring> const int MAXN = 110; #define max(a, b) (a)>(b)?(a):(b) char ch[MAXN]; int dp[MAXN][MAXN]; int Solve(int l, int r){ if(dp[l][r] != -1){ return dp[l][r]; } if(l>=r){ dp[l][r] = 0; return 0; }else if(r == l +1 ){ if((ch[l]=='(' && ch[r]==')') || (ch[l]=='[' && ch[r]==']') ){ dp[l][r] = 2; }else{ dp[l][r] = 0; } return dp[l][r]; } dp[l][r] = Solve(l+1, r); for(int k=l+1; k<=r; ++k){ if((ch[l]=='(' && ch[k]==')') || (ch[l]=='[' && ch[k]==']') ){ dp[l][r] = max(dp[l][r], 2+Solve(l+1, k-1) + Solve(k+1, r)); } } return dp[l][r]; } int main(){ freopen("in.txt", "r", stdin); while(scanf("%s", ch) != EOF){ getchar(); if(strcmp(ch, "end") == 0){ break; } int len = strlen(ch); memset(dp, -1, sizeof(dp)); int ans = Solve(0, len-1); printf("%d ", ans ); } return 0; }
采用count的方式来计算 subsequence,不知道wrong answer的地方是啥?
#include <cstdio> #include <cstdlib> #include <cstring> const int MAXN = 12; int main(){ freopen("in.txt", "r", stdin); int ans, f1,f2, len; char ch[MAXN]; while(scanf("%s", ch) != EOF){ getchar(); if(strcmp(ch, "end") == 0){ break; } len = strlen(ch); ans = 0; f1 = 0; f2 = 0; for(int i=0; i<len; ++i){ if(ch[i] == '('){ ++f1; }else if(ch[i] == '['){ ++f2; }else if(ch[i] == ')'){ if(f1 > 0){ ++ans; --f1; } }else if(ch[i] == ']'){ if(f2 > 0){ ++ans; --f2; } } } printf("%d ", 2*ans ); } return 0; }