变额年金
一般形式的连续变额现金流现值与终值
设在时刻t 时的付款率(
ho_{t}),利息力为(delta_{t})
现值:
[int_{a}^{b} exp left(-int_{0}^{t} delta_{s} d s
ight)
ho_{t} d t
]
终值:
[int_{a}^{b} exp left(int_{t}^{T} delta_{s} d s
ight)
ho_{t} d t
]
5-10:(int_{5}^{10}left(1.2 t^{2}+2 t
ight) exp left[-int_{5}^{t}left(0.0006 s^{2}+0.001 s
ight) mathrm{d} s
ight] mathrm{d} t=382.88)
0-5:(382.88 exp left[-int_{0}^{5}(0.004 t+0.01) mathrm{d} t
ight]=346.44)