全局解释器锁GIL & 线程锁
1.GIL锁(Global Interpreter Lock)
Python代码的执行由Python虚拟机(也叫解释器主循环)来控制。Python在设计之初就考虑到要在主循环中,同时只有一个线程在执行。虽然 Python 解释器中可以“运行”多个线程,但在任意时刻只有一个线程在解释器中运行。
对Python虚拟机的访问由全局解释器锁(GIL)来控制,正是这个锁能保证同一时刻只有一个线程在运行。
GIL本质就是一把互斥锁,既然是互斥锁,所有互斥锁的本质都一样,都是将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,进而保证数据安全。
python程序运行的过程
1.在内存中加载生成一个进程的内存空间
2.这个内存空间中有有解释器的代码和你要执行进程的代码
3.进程中又有多个线程
4.由于python是一门解释型语言, CPU无法识别python的代码, 所以必须经过解释器来对代码进行编译成二进制的代码(.pyc)
5.但是由于CPython解释器的特性,有一个GIL锁,同一时刻只能有一个线程能进入解释器进行编译
6.当一个线程运行了指定数量的字节码指令或者遇到I/O操作时, GIL锁才会被释放, 后面的线程再去抢GIL锁重复前面的操作
7.所以对于同一个进程中的多个线程是无法同时使用多个CPU的
2.同步锁
当同时异步提交多个线程, 这些线程都有相同的数据修改操作, 且在数据修改操作之前有I/O操作或者网络延时, 这个时候可能多个进程拿到的数据是相同的, 然后修改后的数据也是相同的, 这样就会造成数据混乱问题. 这个时候就能用到同步锁, 在拿数据前加个锁,修改完之后再释放, 这样就不会有数据混乱的问题.
from threading import Thread import os,time def work(): global n temp=n time.sleep(0.1) n=temp-1 if __name__ == '__main__': n=100 l=[] for i in range(100): p=Thread(target=work) l.append(p) p.start() for p in l: p.join() print(n) #结果可能为99
from threading import Thread,Lock import os,time def work(): global n lock.acquire() temp=n time.sleep(0.1) n=temp-1 lock.release() if __name__ == '__main__': lock=Lock() n=100 l=[] for i in range(100): p=Thread(target=work) l.append(p) p.start() for p in l: p.join() print(n) #结果肯定为0,由原来的并发执行变成串行,牺牲了执行效率保证了数据安全