请问:怎么将曲线A与曲线B进行配匹,并放到曲线C和曲线D组成的带区内

请教:如何将曲线A与曲线B进行配匹,并放到曲线C和曲线D组成的带区内?
请教:如何将曲线A与曲线B进行配匹,并放到曲线C和曲线D组成的带区内?
        曲线A是一条实测曲线,曲线B是一条理论曲线,曲线C和曲线D分别是曲线B的上差曲线和下差曲线(曲线C和曲线D是由曲线B法向平移得到的),曲线A与曲线B非常相似,但又不是相同的曲线,曲线A与曲线B可能存在夹角或偏移。
        难题:将曲线A与曲线B进行配匹(或叫副近或叫拟合什么的,具体叫什

------解决方案--------------------
曲线二次拟合
------解决方案--------------------
两条曲线的差值简单的取平均不行吗?
------解决方案--------------------
说来说去,还是曲线拟合呀
------解决方案--------------------
依据B曲线的公式(x、y2元方程),对B曲线进行 旋转+平移 获得新的方程(x、y、a、t四元方程)(具体方程找图示学方面的书)

问题就变成,新方程去 拟合 曲线 a,通过一系列(x/y)值,利用比方最小2乘法获得最佳的a/t值

最后对曲线a 进行 -a、 -t的旋转和平移