hadoop学习日志三 编写程序
hadoop学习日记三 编写程序
配好了hadoop的运行环境,也成功运行了hadoop的例子,接下来仿照hadoop的例子写一个程序在hadoop环境中运行一下。
首先,利用HDFS创建一个文件并写入10000个单词,程序如下
package com.yeepay.hadoop.hdfs; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataOutputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; public class HDFSOperator { /** * @param args */ public static void main(String[] args) { // 创建hadoop的配置对象,由name-value这样的一对属性组成,具体形式可参考hadoop的配置文件如core-site.xml Configuration configuration = new Configuration(); try { // 根据配置获取文件系统的实例 FileSystem fileSystem = FileSystem.get(configuration); // 指定文件的位置 Path path = new Path("test/HDFSOperator.txt"); // 获取输出流 FSDataOutputStream os = fileSystem.create(path, true); System.out.println("start to write file"); for (int i = 0; i < 10000; i++) { // 向输出流里写入字符 os.writeChars("test "); } os.close(); System.out.println("finish to write file"); } catch (IOException e) { e.printStackTrace(); } return; } }
然后利用hadoop的MapReduce计算这个文件的字数,程序如下(参考WordCount例子)
package com.yeepay.hadoop.mapreduce; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> { private static final IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer stringTokenizer = new StringTokenizer( value.toString()); System.out.println("TokenizerMapper : current key is " + key.toString()); System.out.println("TokenizerMapper : current value is " + value.toString()); while (stringTokenizer.hasMoreTokens()) { word.set(stringTokenizer.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { System.out.println("IntSumReducer : current key is " + key.toString()); int sum = 0; for (IntWritable value : values) { sum = sum + value.get(); System.out.println("IntSumReducer : current sum is " + sum + " current value is " + value); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args) .getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage:wordcount <int> <out>"); System.exit(2); } System.out.println("arg0 is : " + otherArgs[0]); System.out.println("arg1 is : " + otherArgs[1]); System.out.println("start to create job..."); Job job = new Job(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
将工程导出成jar包hadoop-sample.jar,然后copy到NameNode上。
首先执行HDFSOperator类
root@wenbo00:/home/wenbo# hadoop jar hadoop-sample.jar com.yeepay.hadoop.hdfs.HDFSOperator
执行命令hadoop fs -lsr 查看结果
drwxr-xr-x - root supergroup 0 2012-03-13 19:44 /user/root/input -rw-r--r-- 1 root supergroup 22 2012-03-13 19:44 /user/root/input/file01 -rw-r--r-- 1 root supergroup 28 2012-03-13 19:44 /user/root/input/file02 drwxr-xr-x - root supergroup 0 2012-03-15 03:16 /user/root/output -rw-r--r-- 1 root supergroup 0 2012-03-15 03:16 /user/root/output/_SUCCESS drwxr-xr-x - root supergroup 0 2012-03-15 03:16 /user/root/output/_logs drwxr-xr-x - root supergroup 0 2012-03-15 03:16 /user/root/output/_logs/history -rw-r--r-- 1 root supergroup 16068 2012-03-15 03:16 /user/root/output/_logs/history/job_201203150214_0003_1331806561441_root_word+count -rw-r--r-- 1 root supergroup 20296 2012-03-15 03:16 /user/root/output/_logs/history/job_201203150214_0003_conf.xml -rw-r--r-- 1 root supergroup 49 2012-03-15 03:16 /user/root/output/part-r-00000 drwxr-xr-x - root supergroup 0 2012-03-15 03:33 /user/root/test -rw-r--r-- 1 root supergroup 100000 2012-03-15 03:33 /user/root/test/HDFSOperator.txt
可以看到在test文件加下已经成功创建了HDFSOperator.txt文件
然后执行WordCount类
root@wenbo00:/home/wenbo# hadoop jar hadoop-sample.jar com.yeepay.hadoop.mapreduce.WordCount test testout
可以看到输出结果为
arg0 is : test arg1 is : testout start to create job... ****hdfs://wenbo00:9000/user/root/test 12/03/15 03:34:40 INFO input.FileInputFormat: Total input paths to process : 1 12/03/15 03:34:40 INFO mapred.JobClient: Running job: job_201203150214_0004 12/03/15 03:34:41 INFO mapred.JobClient: map 0% reduce 0% 12/03/15 03:34:54 INFO mapred.JobClient: map 100% reduce 0% 12/03/15 03:35:06 INFO mapred.JobClient: map 100% reduce 100% 12/03/15 03:35:11 INFO mapred.JobClient: Job complete: job_201203150214_0004 12/03/15 03:35:11 INFO mapred.JobClient: Counters: 29 12/03/15 03:35:11 INFO mapred.JobClient: Job Counters 12/03/15 03:35:11 INFO mapred.JobClient: Launched reduce tasks=1 12/03/15 03:35:11 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=14358 12/03/15 03:35:11 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0 12/03/15 03:35:11 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0 12/03/15 03:35:11 INFO mapred.JobClient: Rack-local map tasks=1 12/03/15 03:35:11 INFO mapred.JobClient: Launched map tasks=1 12/03/15 03:35:11 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=10869 12/03/15 03:35:11 INFO mapred.JobClient: File Output Format Counters 12/03/15 03:35:11 INFO mapred.JobClient: Bytes Written=16 12/03/15 03:35:11 INFO mapred.JobClient: FileSystemCounters 12/03/15 03:35:11 INFO mapred.JobClient: FILE_BYTES_READ=22 12/03/15 03:35:11 INFO mapred.JobClient: HDFS_BYTES_READ=100116 12/03/15 03:35:11 INFO mapred.JobClient: FILE_BYTES_WRITTEN=43033 12/03/15 03:35:11 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=16 12/03/15 03:35:11 INFO mapred.JobClient: File Input Format Counters 12/03/15 03:35:11 INFO mapred.JobClient: Bytes Read=100000 12/03/15 03:35:11 INFO mapred.JobClient: Map-Reduce Framework 12/03/15 03:35:11 INFO mapred.JobClient: Map output materialized bytes=22 12/03/15 03:35:11 INFO mapred.JobClient: Map input records=1 12/03/15 03:35:11 INFO mapred.JobClient: Reduce shuffle bytes=22 12/03/15 03:35:11 INFO mapred.JobClient: Spilled Records=2 12/03/15 03:35:11 INFO mapred.JobClient: Map output bytes=140000 12/03/15 03:35:11 INFO mapred.JobClient: CPU time spent (ms)=3420 12/03/15 03:35:11 INFO mapred.JobClient: Total committed heap usage (bytes)=176099328 12/03/15 03:35:11 INFO mapred.JobClient: Combine input records=10000 12/03/15 03:35:11 INFO mapred.JobClient: SPLIT_RAW_BYTES=116 12/03/15 03:35:11 INFO mapred.JobClient: Reduce input records=1 12/03/15 03:35:11 INFO mapred.JobClient: Reduce input groups=1 12/03/15 03:35:11 INFO mapred.JobClient: Combine output records=1 12/03/15 03:35:11 INFO mapred.JobClient: Physical memory (bytes) snapshot=238370816 12/03/15 03:35:11 INFO mapred.JobClient: Reduce output records=1 12/03/15 03:35:11 INFO mapred.JobClient: Virtual memory (bytes) snapshot=1004232704 12/03/15 03:35:11 INFO mapred.JobClient: Map output records=10000
最终计算的数字为10000,程序执行完成。
遇到的问题:
两个程序的执行没有任何输出结果
原因:没有写程序的退出语句,如HDFSOperator中的return语句和WordCount中的System.exit语句。