HashMap的兑现原理【Z】[转]
深入Java集合学习系列:HashMap的实现原理 1. HashMap 概述: HashMap 是基于哈希表的 Map 接口的非同步实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。 2. HashMap 的数据结构: 在 java 编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的, HashMap 也不例外。HashMap 实际上是一个“链表散列”的数据结构,即数组和链表的结合体。 从上图中可以看出, HashMap 底层就是一个数组结构,数组中的每一项又是一个链表。当新建一个 HashMap 的时候,就会初始化一个数组。 源码如下:
可以看出, Entry 就是数组中的元素,每个 Map.Entry 其实就是一个 key-value 对,它持有一个指向下一个元素的引用,这就构成了链表。 3. HashMap 的存取实现: 1) 存储:
从上面的源代码中可以看出:当我们往 HashMap 中 put 元素的时候,先根据 key 的 hashCode 重新计算 hash 值,根据 hash 值得到这个元素在数组中的位置(即下标),如果数组该位置上已经存放有其他元素了,那么在这个位置上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。如果数组该位置上没有元素,就直接将该元素放到此数组中的该位置上。 addEntry(hash, key, value, i) 方法根据计算出的 hash 值,将 key-value 对放在数组 table 的 i 索引处。 addEntry 是 HashMap 提供的一个包访问权限的方法,代码如下:
当系统决定存储 HashMap 中的 key-value 对时,完全没有考虑 Entry 中的 value ,仅仅只是根据 key 来计算并决定每个 Entry 的存储位置。我们完全可以把 Map 集合中的 value 当成 key 的附属,当系统决定了 key 的存储位置之后, value 随之保存在那里即可。 hash(int h) 方法根据 key 的 hashCode 重新计算一次散列。此算法加入了高位计算,防止低位不变,高位变化时,造成的 hash 冲突。 我们可以看到在 HashMap 中要找到某个元素,需要根据 key 的 hash 值来求得对应数组中的位置。如何计算这个位置就是 hash 算法。前面说过 HashMap 的数据结构是数组和链表的结合,所以我们当然希望这个 HashMap 里面的 元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用 hash 算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表,这样就大大优化了查询的效率。 对于任意给定的对象,只要它的 hashCode() 返回值相同,那么程序调用 hash(int h) 方法所计算得到的 hash 码值总是相同的。我们首先想到的就是把 hash 值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是, “ 模 ” 运算的消耗还是比较大的,在 HashMap 中是这样做的:调用 indexFor(int h, int length) 方法来计算该对象应该保存在 table 数组的哪个索引处。 indexFor(int h, int length) 方法的代码如下: 这个方法非常巧妙,它通过 h & (table.length -1) 来得到该对象的保存位,而 HashMap 底层数组的长度总是 2 的 n 次方,这是HashMap 在速度上的优化。在 HashMap 构造器中有如下代码: 这段代码保证初始化时 HashMap 的容量总是 2 的 n 次方,即底层数组的长度总是为 2 的 n 次方。 当 length 总是 2 的 n 次方时, h& (length-1) 运算等价于对 length 取模,也就是 h%length ,但是 & 比 % 具有更高的效率。 这看上去很简单,其实比较有玄机的,我们举个例子来说明: 假设数组长度分别为 15 和 16 ,优化后的 hash 码分别为 8 和 9 ,那么 & 运算后的结果如下: h & (table.length-1) hash table.length-1 8 & (15-1) : 0100 & 1110 = 0100 9 & (15-1) : 0101 & 1110 = 0100 ----------------------------------------------- 8 & (16-1) : 0100 & 1111 = 0100 9 & (16-1) : 0101 & 1111 = 0101 从上面的例子中可以看出:当它们和 15-1 ( 1110 ) “ 与 ” 的时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞, 8 和 9 会被放到数组中的同一个位置上形成链表,那么查询的时候就需要遍历这个链 表,得到 8 或者 9 ,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为 15 的时候, hash 值会与 15-1 ( 1110 )进行 “ 与 ” ,那么 最后一位永远是 0 ,而 0001 , 0011 , 0101 , 1001 , 1011 , 0111 , 1101 这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率!而当数组长度为 16时,即为 2 的 n 次方时, 2n -1 得到的二进制数的每个位上的值都为 1 ,这使得在低位上 & 时,得到的和原 hash 的低位相同,加之hash(int h) 方法对 key 的 hashCode 的进一步优化,加入了高位计算,就使得只有相同的 hash 值的两个值才会被放到数组中的同一个位置上形成链表。 所以说,当数组长度为 2 的 n 次幂的时候,不同的 key 算得得 index 相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。 根据上面 put 方法的源代码可以看出,当程序试图将一个 key-value 对放入 HashMap 中时,程序首先根据该 key 的 hashCode() 返回值决定该 Entry 的存储位置:如果两个 Entry 的 key 的 hashCode() 返回值相同,那它们的存储位置相同。如果这两个 Entry 的 key 通过equals 比较返回 true ,新添加 Entry 的 value 将覆盖集合中原有 Entry 的 value ,但 key 不会覆盖。如果这两个 Entry 的 key 通过equals 比较返回 false ,新添加的 Entry 将与集合中原有 Entry 形成 Entry 链,而且新添加的 Entry 位于 Entry 链的头部 —— 具体说明继续看 addEntry() 方法的说明。
2) 读取:
有了上面存储时的 hash 算法作为基础,理解起来这段代码就很容易了。从上面的源代码中可以看出:从 HashMap 中 get 元素时,首先计算 key 的 hashCode ,找到数组中对应位置的某一元素,然后通过 key 的 equals 方法在对应位置的链表中找到需要的元素。 3) 归纳起来简单地说, HashMap 在底层将 key-value 当成一个整体进行处理,这个整体就是一个 Entry 对象。 HashMap 底层采用一个 Entry[] 数组来保存所有的 key-value 对,当需要存储一个 Entry 对象时,会根据 hash 算法来决定其在数组中的存储位置,在根据equals 方法决定其在该数组位置上的链表中的存储位置;当需要取出一个 Entry 时,也会根据 hash 算法找到其在数组中的存储位置,再根据 equals 方法从该位置上的链表中取出该 Entry 。 4. HashMap 的 resize ( rehash ): 当 HashMap 中的元素越来越多的时候, hash 冲突的几率也就越来越高,因为数组的长度是固定的。所以为了提高查询的效率,就要对 HashMap 的数组进行扩容,数组扩容这个操作也会出现在 ArrayList 中,这是一个常用的操作,而在 HashMap 数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是 resize 。 那么 HashMap 什么时候进行扩容呢?当 HashMap 中的元素个数超过数组大小 <span lang