牛顿迭代法求解平方根 牛顿迭代法求解平方根 一个实例 迭代简介 牛顿迭代法

 

目录(?)[+]

 

一个实例

//java实现的sqrt类和方法
public class sqrt {
    public static double sqrt(double n)
    {
        if (n<0) return Double.NaN;
        double err = 1e-15;
        double t = n;
        while (Math.abs(t - n/t) > err*t)
            t = (n/t + t)/2;
        return t;
    }
    public static void main(String[] args)
    {
        sqrt a  = new sqrt();
        System.out.println(a.sqrt(2));
    }
}
//2的平方根的求解结果
>>1.414213562373095
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

迭代简介

迭代,是一种数值方法,具体指从一个初始值,一步步地通过迭代过程,逐步逼近真实值的方法。 
与之相对的是直接法,也就是通过构建解析解,一步求出问题的方法。

通常情况下,我们总是喜欢一步得到问题的结果,因此直接法总是优先考虑的。 
但是,当遇到复杂的问题时,特别在未知量很多,方程非线性时,无法得到直接解法(例如五次方程并没有解析解)。 
这时候,我们需要使用迭代算法,一步步逼近,得到问题的答案。

迭代算法,通常需要考虑如下问题: 
- 确定迭代变量 
- 确定迭代关系式 
- 确定迭代终止条件

牛顿迭代法

牛顿迭代法简介

牛顿迭代法,求解如下问题的根x

0

求解方法如下:

)

方法中,迭代变量是根r

牛顿迭代法需要满足的条件是: 
)不为0,那么牛顿法将具有平方收敛的特性,也就是,每迭代一次,其结果的有效倍数将增加一倍。

简单推导

牛顿迭代法求解平方根
牛顿迭代法求解平方根
一个实例
迭代简介
牛顿迭代法

由 

1

有 

)

对于平方根问题,假设n,代入上式,有 

)

其图像含义是:通过对接近零点的领域点做切线,不断逼近零点,最终十分靠近零点。

泰勒公式推导

上面的式子,同样,可以用泰勒公式推导出来。 

.

只取等号右边的前两项,有 
)

两边同时加上n
,有 
)

最终,n
,上式同样可以化成 
)

本质上,牛顿迭代法就是利用了泰勒公式的前两项和,是泰勒公式的简化。

延伸与应用

同样的,牛顿迭代法同样可以求n次方根,对于n 
有 

)