import numpy as np
from sklearn.model_selection import train_test_split,KFold,StratifiedKFold,LeaveOneOut,cross_val_score
#模型选择数据集切分train_test_split模型
def test_train_test_split():
X=[[1,2,3,4],
[11,12,13,14],
[21,22,23,24],
[31,32,33,34],
[41,42,43,44],
[51,52,53,54],
[61,62,63,64],
[71,72,73,74]]
y=[1,1,0,0,1,1,0,0]
# 切分,测试集大小为原始数据集大小的 40%
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.4, random_state=0)
print("X_train=",X_train)
print("X_test=",X_test)
print("y_train=",y_train)
print("y_test=",y_test)
# 分层采样切分,测试集大小为原始数据集大小的 40%
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.4,random_state=0,stratify=y)
print("Stratify:X_train=",X_train)
print("Stratify:X_test=",X_test)
print("Stratify:y_train=",y_train)
print("Stratify:y_test=",y_test)
test_train_test_split()

#模型选择数据集切分KFold模型
def test_KFold():
X=np.array([[1,2,3,4],
[11,12,13,14],
[21,22,23,24],
[31,32,33,34],
[41,42,43,44],
[51,52,53,54],
[61,62,63,64],
[71,72,73,74],
[81,82,83,84]])
y=np.array([1,1,0,0,1,1,0,0,1])
# 切分之前不混洗数据集
folder=KFold(n_splits=3,random_state=0,shuffle=False)
for train_index,test_index in folder.split(X,y):
print("Train Index:",train_index)
print("Test Index:",test_index)
print("X_train:",X[train_index])
print("X_test:",X[test_index])
print("")
# 切分之前混洗数据集
shuffle_folder=KFold(n_splits=3,random_state=0,shuffle=True)
for train_index,test_index in shuffle_folder.split(X,y):
print("Shuffled Train Index:",train_index)
print("Shuffled Test Index:",test_index)
print("Shuffled X_train:",X[train_index])
print("Shuffled X_test:",X[test_index])
print("")
test_KFold()

#模型选择数据集切分StratifiedKFold模型
def test_StratifiedKFold():
X=np.array([[1,2,3,4],
[11,12,13,14],
[21,22,23,24],
[31,32,33,34],
[41,42,43,44],
[51,52,53,54],
[61,62,63,64],
[71,72,73,74]])
y=np.array([1,1,0,0,1,1,0,0])
folder=KFold(n_splits=4,random_state=0,shuffle=False)
stratified_folder=StratifiedKFold(n_splits=4,random_state=0,shuffle=False)
for train_index,test_index in folder.split(X,y):
print("Train Index:",train_index)
print("Test Index:",test_index)
print("y_train:",y[train_index])
print("y_test:",y[test_index])
print("")
for train_index,test_index in stratified_folder.split(X,y):
print("Stratified Train Index:",train_index)
print("Stratified Test Index:",test_index)
print("Stratified y_train:",y[train_index])
print("Stratified y_test:",y[test_index])
print("")
test_StratifiedKFold()

#模型选择数据集切分LeaveOneOut模型
def test_LeaveOneOut():
X=np.array([[1,2,3,4],
[11,12,13,14],
[21,22,23,24],
[31,32,33,34]])
y=np.array([1,1,0,0])
lo=LeaveOneOut()
for train_index,test_index in lo.split(X):
print("Train Index:",train_index)
print("Test Index:",test_index)
print("X_train:",X[train_index])
print("X_test:",X[test_index])
print("")
test_LeaveOneOut()

#模型选择数据集切分cross_val_score模型
def test_cross_val_score():
from sklearn.datasets import load_digits
from sklearn.svm import LinearSVC
digits=load_digits() # 加载用于分类问题的数据集
X=digits.data
y=digits.target
# 使用 LinearSVC 作为分类器
result=cross_val_score(LinearSVC(),X,y,cv=10)
print("Cross Val Score is:",result)
test_cross_val_score()
