第四章-虚拟机栈 1. 虚拟机栈
笔记来源:尚硅谷 JVM 全套教程,百万播放,全网巅峰(宋红康详解 java 虚拟机)
同步更新:https://gitee.com/vectorx/NOTE_JVM
1.1. 虚拟机栈概述
1.1.1. 虚拟机栈出现的背景
由于跨平台性的设计,Java 的指令都是根据栈来设计的。不同平台 CPU 架构不同,所以不能设计为基于寄存器的。
优点是跨平台,指令集小,编译器容易实现,缺点是性能下降,实现同样的功能需要更多的指令
。
1.1.2. 初步印象
有不少 Java 开发人员一提到 Java 内存结构,就会非常粗粒度地将 JVM 中的内存区理解为仅有 Java 堆(heap)和 Java 栈(stack)?为什么?
1.1.3. 内存中的栈与堆
栈是运行时的单位,而堆是存储的单位
-
栈解决程序的运行问题
,即程序如何执行,或者说如何处理数据。 -
堆解决的是数据存储的问题
,即数据怎么放,放哪里
1.1.4. 虚拟机栈基本内容
Java 虚拟机栈是什么?
Java 虚拟机栈(Java Virtual Machine Stack),早期也叫 Java 栈。每个线程在创建时都会创建一个虚拟机栈,其内部保存一个个的栈帧(Stack Frame),对应着一次次的 Java 方法调用,是线程私有的
。
- 栈是线程私有的
- 一个方法对应一个栈帧的入栈和出栈
举例子:
/**
* @author xiexu
* @create 2020-11-20 9:06 下午
*/
public class StackTest {
public static void main(String[] args) {
StackTest test = new StackTest();
test.methodA();
}
public void methodA() {
int i = 10;
int j = 20;
methodB();
}
public void methodB() {
int k = 30;
int m = 40;
}
}
生命周期
生命周期和线程一致,也就是线程结束了,该虚拟机栈也销毁了
作用
主管Java程序的运行,它保存方法的局部变量(8 种基本数据类型、对象的引用地址)、部分结果,并参与方法的调用和返回。
- 局部变量 VS 成员变量(属性)
- 基本数据类型变量 VS 引用类型变量(类、数组、接口)
栈的特点
栈是一种快速有效的分配存储方式,访问速度仅次于程序计数器。
JVM 直接对 Java 栈的操作只有两个:
- 每个方法执行,伴随着进栈(入栈、压栈)
- 执行结束后的出栈工作
对于栈来说不存在垃圾回收问题(栈存在溢出的情况)
面试题:开发中遇到哪些异常?
栈中可能出现的异常
Java 虚拟机规范允许Java 栈的大小是动态的或者是固定不变的。
-
如果采用固定大小的 Java 虚拟机栈,那每一个线程的 Java 虚拟机栈容量可以在线程创建的时候独立选定。如果线程请求分配的栈容量超过 Java 虚拟机栈允许的最大容量,Java 虚拟机将会抛出一个StackOverflowError 异常。
-
如果 Java 虚拟机栈可以动态扩展,并且在尝试扩展的时候无法申请到足够的内存,或者在创建新的线程时没有足够的内存去创建对应的虚拟机栈,那 Java 虚拟机将会抛出一个 OutOfMemoryError 异常。
public static void main(String[] args) {
test();
}
public static void test() {
test();
}
//抛出异常:Exception in thread"main"java.lang.StackoverflowError
//程序不断的进行递归调用,而且没有退出条件,就会导致不断地进行压栈。
设置栈内存大小
我们可以使用参数 -Xss 选项来设置线程的最大栈空间,栈的大小直接决定了函数调用的最大可达深度
-Xss1024m // 栈内存为 1024MBS
-Xss1024k // 栈内存为 1024KB
- 设置线程的最大栈空间:256KB
public class StackDeepTest{
private static int count=0;
public static void recursion(){
count++;
recursion();
}
public static void main(String args[]){
try{
recursion();
} catch (Throwable e){
System.out.println("deep of calling="+count);
e.printstackTrace();
}
}
}
说明:可以看到,没有设置栈内存大小的时候,程序可以递归10824次
当我们缩小栈内存大小,设置为256k时,程序递归1874次
1.2. 栈的存储单位
1.2.1. 栈中存储什么?
每个线程都有自己的栈,栈中的数据都是以栈帧(Stack Frame)的格式存在。
在这个线程上正在执行的每个方法都各自对应一个栈帧(Stack Frame)。
一个方法的执行对应一个栈帧的入栈,一个方法的执行结束对应一个栈帧的出栈
栈帧是一个内存区块,是一个数据集,维系着方法执行过程中的各种数据信息。
1.2.2. 栈运行原理
-
JVM 直接对 Java 栈的操作只有两个,就是对栈帧的压栈和出栈,遵循“先进后出”/“后进先出”原则。
-
在一条活动线程中,一个时间点上,只会有一个活动的栈帧。即只有当前正在执行的方法的栈帧(栈顶栈帧)是有效的,这个栈帧被称为当前栈帧(Current Frame),
-
与当前栈帧相对应的方法就是当前方法(Current Method),
-
定义这个方法的类就是当前类(Current Class)。
-
-
执行引擎运行的所有字节码指令只针对当前栈帧进行操作。
-
如果在该方法中调用了其他方法,对应的新的栈帧会被创建出来,放在栈的顶端,成为新的当前帧。
-
不同线程中所包含的栈帧是不允许存在相互引用的,即不可能在一个栈帧之中引用另外一个线程的栈帧。
-
如果当前方法调用了其他方法,方法返回之际,当前栈帧会传回此方法的执行结果给前一个栈帧,接着,虚拟机会丢弃当前栈帧,使得前一个栈帧重新成为当前栈帧。
-
Java 方法有两种返回函数的方式,
- 一种是正常的函数返回,使用 return 指令;
- 另外一种是抛出异常。不管使用哪种方式,都会导致栈帧被弹出。
public class CurrentFrameTest{
public void methodA(){
system.out.println("当前栈帧对应的方法->methodA");
methodB();
system.out.println("当前栈帧对应的方法->methodA");
}
public void methodB(){
System.out.println("当前栈帧对应的方法->methodB");
}
method1()开始执行...
method2()开始执行...
method3()开始执行...
method3()即将结束...
method2()即将结束...
method1()执行结束...
1.2.3. 栈帧的内部结构
每个栈帧中存储着:
- 局部变量表(Local Variables)
- 操作数栈(operand Stack)(或表达式栈)
- 动态链接(DynamicLinking)(或指向运行时常量池的方法引用)
- 方法返回地址(Return Address)(或方法正常退出或者异常退出的定义)
- 一些附加信息
并行每个线程下的栈都是私有的,因此每个线程都有自己各自的栈,并且每个栈里面都有很多栈帧,栈帧的大小主要由局部变量表 和 操作数栈决定的
1.3. 局部变量表(Local Variables)
局部变量表也被称之为局部变量数组或本地变量表
-
定义为一个数字数组,主要用于存储方法参数和定义在方法体内的局部变量,这些数据类型包括各类基本数据类型、对象引用(reference),以及 returnAddress 类型。
-
由于局部变量表是建立在线程的栈上,是线程的私有数据,因此不存在数据安全问题
-
局部变量表所需的容量大小是在编译期确定下来的,并保存在方法的 Code 属性的 maximum local variables 数据项中。在方法运行期间是不会改变局部变量表的大小的。
-
方法嵌套调用的次数由栈的大小决定。一般来说,栈越大,方法嵌套调用次数越多。
- 对一个函数而言,它的参数和局部变量越多,使得局部变量表膨胀,它的栈帧就越大,以满足方法调用所需传递的信息增大的需求。
- 进而函数调用就会占用更多的栈空间,导致其嵌套调用次数就会减少。
-
局部变量表中的变量只在当前方法调用中有效。在方法执行时,虚拟机通过使用局部变量表完成参数值到参数变量列表的传递过程。
-
当方法调用结束后,随着方法栈帧的销毁,局部变量表也会随之销毁。
举例说明:
局部变量表所需的容量大小是在编译期确定下来的
public class LocalVariablesTest { private int count = 0; public static void main(String[] args) { LocalVariablesTest test = new LocalVariablesTest(); int num = 10; test.test1(); } public void test1() { Date date = new Date(); String name1 = "baidu.com"; String info = test2(date, name1); System.out.println(date + name1); } public String test2(Date dateP, String name2) { dateP = null; name2 = "xiexu"; double weight = 185.5;//占据两个slot char gender = '男'; return dateP + name2; } }
反编译后,可得结论:
-
在编译期间,局部变量的个数、每个局部变量的大小都已经被记录下来
-
所以局部变量表所需的容量大小是在编译期确定下来的
-
利用 JClassLib 也可以查看局部变量的个数
JClassLib 参数详解
1.3.1. 关于 Slot 的理解
-
局部变量表,最基本的存储单元是 Slot(变量槽)
-
参数值的存放总是在局部变量数组的 index0 开始,到数组长度-1 的索引结束。
-
局部变量表中存放编译期可知的各种基本数据类型(8 种),引用类型(reference),returnAddress 类型的变量。
-
在局部变量表里,32 位以内的类型只占用一个 slot(包括 returnAddress 类型),64 位的类型(long 和 double)占用两个 slot。
-
byte、short、char 在存储前被转换为 int,boolean 也被转换为 int,0 表示 false,非 0 表示 true。
-
JVM 会为局部变量表中的每一个 Slot 都分配一个访问索引,通过这个索引即可成功访问到局部变量表中指定的局部变量值
-
当一个实例方法被调用的时候,它的方法参数和方法体内部定义的局部变量将会按照顺序被复制到局部变量表中的每一个 slot 上
-
如果需要访问局部变量表中一个 64bit 的局部变量值时,只需要使用前一个索引即可。(比如:访问 long 或 doub1e 类型变量)
-
如果当前帧是由构造方法或者实例方法创建的,那么该对象引用 this 将会存放在 index 为 0 的 slot 处,其余的参数按照参数表顺序继续排列。
在构造器以及实例方法中,
对象引用this
都会存放在索引为0的位置
//构造器
public LocalVariablesTest() {
this.count = 1;
}
//实例方法
public void test1() {
Date date = new Date();
String name1 = "baidu.com";
test2(date, name1);
System.out.println(date + name1);
}
64位的类型(long和double)占用两个slot
public String test2(Date dateP, String name2) {
dateP = null;
name2 = "xiexu";
double weight = 185.5; //占据两个slot
char gender = '男';
return dateP + name2;
}
可以看到,weight为double类型,索引从3直接跳到5,说明double占据两个slot
static方法无法调用this
public static void testStatic() {
LocalVariablesTest test = new LocalVariablesTest();
Date date = new Date();
int count = 10;
System.out.println(count);
//因为this变量不存在于该静态方法的局部变量表中!!!
// System.out.println(this.count);
}
1.3.2. Slot 的重复利用
栈帧中的局部变量表中的槽位是可以重用的,如果一个局部变量过了其作用域,那么在其作用域之后申明的新的局部变就很有可能会复用过期局部变量的槽位,从而达到节省资源的目的。
public class SlotTest {
public void localVarl() {
int a = 0;
System.out.println(a);
int b = 0;
}
public void localVar2() {
{
int a = 0;
System.out.println(a);
}
//此时的就会复用a的槽位
int b = 0;
}
}
//此时局部变量表的长度是3
// 因为solt复用
可以看到,局部变量c 重用了 局部变量b 的slot位置
1.3.3. 静态变量与局部变量的对比
参数表分配完毕之后,再根据方法体内定义的变量的顺序和作用域分配。
我们知道类变量表有两次初始化的机会,第一次是在“准备阶段”,执行系统初始化,对类变量设置零值,另一次则是在“初始化”阶段,赋予程序员在代码中定义的初始值。
和类变量初始化不同的是,局部变量表不存在系统初始化的过程,这意味着一旦定义了局部变量则必须人为的初始化,否则无法使用。
public void test(){
int i;
System. out. println(i);
}
这样的代码是错误的,没有赋值不能够使用。
1.3.1. 补充说明
在栈帧中,与性能调优关系最为密切的部分就是前面提到的局部变量表。在方法执行时,虚拟机使用局部变量表完成方法的传递。
局部变量表中的变量也是重要的垃圾回收根节点,只要被局部变量表中直接或间接引用的对象都不会被回收。
1.4. 操作数栈(Operand Stack)
1.4.1 操作数栈的特点
-
每一个独立的栈帧除了包含局部变量表以外,还包含一个后进先出(Last-In-First-Out)的 操作数栈,也可以称之为表达式栈(Expression Stack)
-
操作数栈,在方法执行过程中,根据字节码指令,往栈中写入数据或提取数据,即入栈(push)和 出栈(pop)
-
某些字节码指令将值压入操作数栈,其余的字节码指令将操作数取出栈。使用它们后再把结果压入栈
-
比如:执行复制、交换、求和等操作
-
代码举例
public void testAddOperation(){
byte i = 15;
int j = 8;
int k = i + j;
}
字节码指令信息
public void testAddOperation();
Code:
0: bipush 15
2: istore_1
3: bipush 8
5: istore_2
6:iload_1
7:iload_2
8:iadd
9:istore_3
10:return
1.4.2操作数栈的作用
-
操作数栈,主要用于保存计算过程的中间结果,同时作为计算过程中变量临时的存储空间。
-
操作数栈就是 JVM 执行引擎的一个工作区,当一个方法刚开始执行的时候,一个新的栈帧也会随之被创建出来,这个方法的操作数栈是空的。
-
每一个操作数栈都会拥有一个明确的栈深度用于存储数值,其所需的最大深度在编译期就定义好了,保存在方法的 Code 属性中,为 max_stack 的值。
-
栈中的任何一个元素都是可以任意的 Java 数据类型反编译后,可得结论:
- 32bit 的类型占用一个栈单位深度
- 64bit 的类型占用两个栈单位深度
-
操作数栈并非采用访问索引的方式来进行数据访问的,而是只能通过标准的入栈和出栈操作来完成一次数据访问
-
如果被调用的方法带有返回值的话,其返回值将会被压入当前栈帧的操作数栈中,并更新 PC 寄存器中下一条需要执行的字节码指令。
-
操作数栈中元素的数据类型必须与字节码指令的序列严格匹配,这由编译器在编译器期间进行验证,同时在类加载过程中的类检验阶段的数据流分析阶段要再次验证。
-
另外,我们说 Java 虚拟机的解释引擎是基于栈的执行引擎,其中的栈指的就是操作数栈。
1.5. 代码追踪
public void testAddOperation() {
byte i = 15;
int j = 8;
int k = i + j;
}
使用 javap 命令反编译 class 文件: javap -v 类名.class
public void testAddoperation();
Code:
0: bipush 15
2: istore_1
3: bipush 8
5: istore_2
6: iload_1
7: iload_2
8: iadd
9: istore_3
10: return
程序执行流程
- 首先执行第一条语句,PC寄存器指向的是0,也就是指令地址为0,然后使用bipush让操作数15入操作数栈。
-
执行完后,让PC寄存器 + 1,指向下一行代码,下一行代码就是将操作数栈的元素存储到局部变量表索引1的位置,我们可以看到局部变量表的已经增加了一个元素
- 解释
为什么局部变量表索引从 1 开始
,因为该方法为实例方法,局部变量表索引为 0 的位置存放的是 this
- 解释
然后PC寄存器+1,指向的是下一行。让操作数8也入栈,同时执行 istore 操作,存入局部变量表中
- 然后从局部变量表中,依次将数据取出放在操作数栈中,等待执行 add 操作
- 将操作数栈的两个元素出栈,执行iadd操作
- 这里的 iadd 操作具体是:执行引擎将字节码指令翻译成机器指令,然后被CPU进行运算,得出结果,重新放入操作数栈中
- 然后执行 istore 操作,将操作数23 存储到局部变量表索引为3的位置
关于 int j =8; 的说明
- 我们反编译得到的字节码指令如下
- 因为 8 可以存放在 byte 类型中,所以压入操作数栈的类型为 byte ,而不是 int ,所以执行的字节码指令为 bipush 8
- 然后将数值 8 转换为int类型存储在局部变量表中:istore_2
如果被调用的方法带有返回值的话,其返回值将会被压入当前栈帧的操作数栈中
public int getSum() {
int m = 10;
int n = 20;
int k = m + n;
return k;
}
public void testGetSum() {
//获取上一个栈桢返回的结果,并保存在操作数栈中
int i = getSum();
int j = 10;
}
程序员面试过程中,常见的 i++和++i 的区别,放到字节码篇章时再介绍。
public void add(){
//第1类问题:
int i1 = 10;
i1++;
int i2 = 10;
++i2;
//第2类问题:
int i3 = 10;
int i4 = i3++;
int i5 = 10;
int i6 = ++i5;
//第3类问题:
int i7 = 10;
i7 = i7++;
int i8 = 10;
i8 = ++i8;
//第4类问题:
int i9 = 10;
int i10 = i9++ + ++i9;
}
反编译后的字节码指令
0 bipush 10
2 istore_1
3 iinc 1 by 1
6 bipush 10
8 istore_2
9 iinc 2 by 1
12 bipush 10
14 istore_3
15 iload_3
16 iinc 3 by 1
19 istore 4
21 bipush 10
23 istore 5
25 iinc 5 by 1
28 iload 5
30 istore 6
32 bipush 10
34 istore 7
36 iload 7
38 iinc 7 by 1
41 istore 7
43 bipush 10
45 istore 8
47 iinc 8 by 1
50 iload 8
52 istore 8
54 bipush 10
56 istore 9
58 iload 9
60 iinc 9 by 1
63 iinc 9 by 1
66 iload 9
68 iadd
69 istore 10
71 return
1.6. 栈顶缓存技术(Top Of Stack Cashing)技术
-
前面提过,基于栈式架构的虚拟机所使用的
零地址指令
更加紧凑,但完成一项操作的时候必然需要使用更多的入栈和出栈指令,这同时也就意味着将需要更多的指令分派(instruction dispatch)次数和内存读/写次数。 -
由于操作数是存储在内存中的,因此频繁地执行内存读/写操作必然会影响执行速度。为了解决这个问题,HotSpot JVM 的设计者们提出了栈顶缓存(Tos,Top-of-Stack Cashing)技术,将栈顶元素全部缓存在物理 CPU 的寄存器中,以此降低对内存的读/写次数,提升执行引擎的执行效率。
1.7. 动态链接(Dynamic Linking)
动态链接、方法返回地址、附加信息 : 有些地方被称为帧数据区
-
每一个栈帧内部都包含一个指向运行时常量池中该栈帧所属方法的引用。包含这个引用的目的就是为了支持当前方法的代码能够实现动态链接(Dynamic Linking)。比如:invokedynamic 指令
-
在 Java 源文件被编译到字节码文件中时,所有的变量和方法引用都作为符号引用(Symbolic Reference)保存在 class 文件的常量池里。
-
比如:描述一个方法调用了另外的其他方法时,就是通过常量池中指向方法的符号引用来表示的,那么动态链接的作用就是为了将这些符号引用转换为调用方法的直接引用。
在Java源文件被编译到字节码文件中时,所有的变量和方法引用都作为符号引用(Symbolic Reference)保存在class文件的常量池里
public class DynamicLinkingTest {
int num = 10;
public void methodA(){
System.out.println("methodA()....");
}
public void methodB(){
System.out.println("methodB()....");
methodA();
num++;
}
}
-
在字节码指令中,methodB( ) 方法中通过
invokevirtual #7
指令调用了方法 A -
那么
#7
font> 是什么呢?public void methodB(); descriptor: ()V flags: ACC_PUBLIC Code: stack=3, locals=1, args_size=1 0: getstatic #3 // Field java/lang/System.out:Ljava/io/PrintStream; 3: ldc #6 // String methodB().... 5: invokevirtual #5 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 8: aload_0 9: invokevirtual #7 // Method methodA:()V 12: aload_0 13: dup 14: getfield #2 // Field num:I 17: iconst_1 18: iadd 19: putfield #2 // Field num:I 22: return LineNumberTable: line 12: 0 line 13: 8 line 14: 12 line 15: 22 LocalVariableTable: Start Length Slot Name Signature 0 23 0 this Lcn/sxt/java1/DynamicLinkingTest;
-
往上面翻,找到常量池的定义:
#7 = Methodref #8.#31
-
先找
#8
: -
#8 = Class #32
:去找#32
-
#32 = Utf8 cn/sxt/java1/DynamicLinkingTest
-
结论:通过
#8
我们找到了DynamicLinkingTest 这个类
-
再来找
<font color='red'>#31
:-
#31 = NameAndType #19:#13
:去找#19 和 #13
-
#19 = Utf8 methodA
:方法名为 methodA -
#13 = Utf8 ()V
:方法没有形参,返回值为 void
-
-
-
结论:通过 #7 我们就能找到需要调用的 methodA( ) 方法,并进行调用
Constant pool: #1 = Methodref #9.#23 // java/lang/Object."<init>":()V #2 = Fieldref #8.#24 // cn/sxt/java1/DynamicLinkingTest.num:I #3 = Fieldref #25.#26 // java/lang/System.out:Ljava/io/PrintStream; #4 = String #27 // methodA().... #5 = Methodref #28.#29 // java/io/PrintStream.println:(Ljava/lang/String;)V #6 = String #30 // methodB().... #7 = Methodref #8.#31 // cn/sxt/java1/DynamicLinkingTest.methodA:()V #8 = Class #32 // cn/sxt/java1/DynamicLinkingTest #9 = Class #33 // java/lang/Object #10 = Utf8 num #11 = Utf8 I #12 = Utf8 <init> #13 = Utf8 ()V #14 = Utf8 Code #15 = Utf8 LineNumberTable #16 = Utf8 LocalVariableTable #17 = Utf8 this #18 = Utf8 Lcn/sxt/java1/DynamicLinkingTest; #19 = Utf8 methodA #20 = Utf8 methodB #21 = Utf8 SourceFile #22 = Utf8 DynamicLinkingTest.java #23 = NameAndType #12:#13 // "<init>":()V #24 = NameAndType #10:#11 // num:I #25 = Class #34 // java/lang/System #26 = NameAndType #35:#36 // out:Ljava/io/PrintStream; #27 = Utf8 methodA().... #28 = Class #37 // java/io/PrintStream #29 = NameAndType #38:#39 // println:(Ljava/lang/String;)V #30 = Utf8 methodB().... #31 = NameAndType #19:#13 // methodA:()V #32 = Utf8 cn/sxt/java1/DynamicLinkingTest #33 = Utf8 java/lang/Object #34 = Utf8 java/lang/System #35 = Utf8 out #36 = Utf8 Ljava/io/PrintStream; #37 = Utf8 java/io/PrintStream #38 = Utf8 println #39 = Utf8 (Ljava/lang/String;)V
为什么需要运行时常量池呢?
-
常量池的作用:就是为了提供一些符号和常量,便于指令的识别
-
因为在不同的方法,都可能调用常量或者方法,所以
只需要存储一份即可,然后记录其引用即可,节省了空间
1.8. 方法的调用:解析与分配
在 JVM 中,将符号引用转换为调用方法的直接引用与方法的绑定机制相关
静态链接和动态链接
1.8.1. 静态链接
当一个字节码文件被装载进 JVM 内部时,如果被调用的目标方法在编译期可知,且运行期保持不变时,这种情况下降调用方法的符号引用转换为直接引用的过程称之为静态链接
1.8.2. 动态链接
如果被调用的方法在编译期无法被确定下来,只能够在程序运行期将调用的方法的符号转换为直接引用,由于这种引用转换过程具备动态性,因此也被称之为动态链接。
静态链接和动态链接不是名词,而是动词,这是理解的关键。
对应的方法的绑定机制为:早期绑定(Early Binding)和晚期绑定(Late Binding)。绑定是一个字段、方法或者类在符号引用被替换为直接引用的过程,这仅仅发生一次。
1.8.3. 早期绑定
早期绑定就是指被调用的目标方法如果在编译期可知,且运行期保持不变时
,即可将这个方法与所属的类型进行绑定,这样一来,由于明确了被调用的目标方法究竟是哪一个,因此也就可以使用静态链接的方式将符号引用转换为直接引用。
1.8.1. 晚期绑定
如果被调用的方法在编译期无法被确定下来,只能够在程序运行期根据实际的类型绑定相关的方法
,这种绑定方式也就被称之为晚期绑定。
随着高级语言的横空出世,类似于 Java 一样的基于面向对象的编程语言如今越来越多,尽管这类编程语言在语法风格上存在一定的差别,但是它们彼此之间始终保持着一个共性,那就是都支持封装、继承和多态等面向对象特性,既然这一类的编程语言具备多态特悄,那么自然也就具备早期绑定和晚期绑定两种绑定方式。
Java 中任何一个普通的方法其实都具备虚函数的特征,它们相当于 C++语言中的虚函数(C++中则需要使用关键字 virtual 来显式定义)。如果在 Java 程序中不希望某个方法拥有虚函数的特征时,则可以使用关键字 final 来标记这个方法。
代码举例
/**
* 说明早期绑定和晚期绑定的例子
*/
class Animal {
public void eat() {
System.out.println("动物进食");
}
}
interface Huntable {
void hunt();
}
class Dog extends Animal implements Huntable {
@Override
public void eat() {
System.out.println("狗吃骨头");
}
@Override
public void hunt() {
System.out.println("捕食耗子,多管闲事");
}
}
class Cat extends Animal implements Huntable {
public Cat() {
super(); //表现为:早期绑定
}
public Cat(String name) {
this(); //表现为:早期绑定
}
@Override
public void eat() {
super.eat(); //表现为:早期绑定
System.out.println("猫吃鱼");
}
@Override
public void hunt() {
System.out.println("捕食耗子,天经地义");
}
}
public class AnimalTest {
public void showAnimal(Animal animal) {
animal.eat(); //表现为:晚期绑定
}
public void showHunt(Huntable h) {
h.hunt(); //表现为:晚期绑定
}
}
1.8.5. 虚方法和非虚方法
- 如果方法在编译期就确定了具体的调用版本,这个版本在运行时是不可变的。这样的方法称为
非虚方法
。 -
静态方法、私有方法、final 方法、实例构造器、父类方法都是非虚方法
。 - 其他方法称为虚方法。
子类对象的多态性的使用前提
- 类的继承关系
- 方法的重写
虚拟机中提供了以下几条方法调用指令:
普通调用指令:
- invokestatic:调用静态方法,解析阶段确定唯一方法版本
- invokespecial:调用方法、私有及父类方法,解析阶段确定唯一方法版本
- invokevirtual:调用所有虚方法
- invokeinterface:调用接口方法
动态调用指令:
- invokedynamic:动态解析出需要调用的方法,然后执行
前四条指令固化在虚拟机内部,方法的调用执行不可人为干预,而 invokedynamic 指令则支持由用户确定方法版本。其中 invokestatic 指令和 invokespecial 指令调用的方法称为非虚方法,其余的(fina1 修饰的除外)称为虚方法。
关于 invokednamic 指令
-
JVM 字节码指令集一直比较稳定,一直到 Java7 中才增加了一个 invokedynamic 指令,这是Java 为了实现「动态类型语言」支持而做的一种改进。
-
但是在 Java7 中并没有提供直接生成 invokedynamic 指令的方法,需要借助 ASM 这种底层字节码工具来产生 invokedynamic 指令。直到 Java8 的 Lambda 表达式的出现,invokedynamic 指令的生成,在 Java 中才有了直接的生成方式。
-
Java7 中增加的动态语言类型支持的本质是对 Java 虚拟机规范的修改,而不是对 Java 语言规则的修改,这一块相对来讲比较复杂,增加了虚拟机中的方法调用,最直接的受益者就是运行在 Java 平台的动态语言的编译器。
区别:
- 前四条指令固化在虚拟机内部,方法的调用执行不可人为干预
- 而invokedynamic指令则支持由用户确定方法版本
-
其中invokestatic指令和invokespecial指令调用的方法称为非虚方法
,其余的(final修饰的除外)称为虚方法
代码举例
在类加载的解析阶段就可以进行解析,如下是非虚方法举例:
/**
* 解析调用中非虚方法、虚方法的测试
*
* invokestatic指令和invokespecial指令调用的方法称为非虚方法
*/
class Father {
public Father() {
System.out.println("father的构造器");
}
public static void showStatic(String str) {
System.out.println("father " + str);
}
public final void showFinal() {
System.out.println("father show final");
}
public void showCommon() {
System.out.println("father 普通方法");
}
}
public class Son extends Father {
public Son() {
//invokespecial 非虚方法
super();
}
public Son(int age) {
//invokespecial 非虚方法
this();
}
//不是重写的父类的静态方法,因为静态方法不能被重写!
public static void showStatic(String str) {
System.out.println("son " + str);
}
private void showPrivate(String str) {
System.out.println("son private" + str);
}
public void show() {
//invokestatic 非虚方法
showStatic("baidu.com");
//invokestatic 非虚方法
super.showStatic("good!");
//invokespecial 非虚方法
showPrivate("hello!");
//invokevirtual
//虽然字节码指令中显示为invokevirtual,但因为此方法声明有final,不能被子类重写,所以也认为此方法是非虚方法。
showFinal();
//invokespecial 非虚方法
super.showCommon();
//invokevirtual 虚方法
//有可能子类会重写父类的showCommon()方法
showCommon();
//invokevirtual 虚方法
//info()是普通方法,有可能被重写,所以是虚方法
info();
MethodInterface in = null;
//invokeinterface 虚方法
in.methodA();
}
public void info() {
}
public void display(Father f) {
f.showCommon();
}
public static void main(String[] args) {
Son so = new Son();
so.show();
}
}
interface MethodInterface {
void methodA();
}
虚拟机中提供了以下几条方法调用指令:
动态类型语言和静态类型语言
-
动态类型语言和静态类型语言两者的区别就在于对类型的检查是在编译期还是在运行期,满足前者就是静态类型语言,反之是动态类型语言。
-
说的再直白一点就是,静态类型语言是判断变量自身的类型信息;动态类型语言是判断变量值的类型信息,变量没有类型信息,变量值才有类型信息,这是动态语言的一个重要特征。
Java语言:String info = "mogu blog"; (Java是静态类型语言的,会先编译再进行类型检查) JS语言:var name = "shkstart"; var name = 10; (运行时才进行检查) Python语言:info = 130.5; (动态类型语言)
代码举例
/**
* 体会invokedynamic 指令
*/
@FunctionalInterface
interface Func {
public boolean func(String str);
}
public class Lambda {
public void lambda(Func func) {
return;
}
public static void main(String[] args) {
Lambda lambda = new Lambda();
Func func = s -> {
return true;
};
lambda.lambda(func);
lambda.lambda(s -> {
return true;
});
}
}
方法重写的本质 很重要
Java 语言中方法重写的本质:
- 找到操作数栈顶的第一个元素所执行的对象的实际类型,记作 C。
- 如果在类型 C 中找到与常量中的描述符合简单名称都相符的方法,则进行访问权限校验,如果通过则返回这个方法的直接引用,查找过程结束;如果不通过,则返回 java.lang.IllegalAccessError 异常。
- 否则,按照继承关系从下往上依次对 C 的各个父类进行第 2 步的搜索和验证过程。
- 如果始终没有找到合适的方法,则抛出 java.1ang.AbstractMethodsrror 异常。
IllegalAccessError 介绍
-
程序试图访问或修改一个属性或调用一个方法,这个属性或方法,你没有权限访问。
-
一般的,这个会引起编译器异常。这个错误如果发生在运行时,就说明一个类发生了不兼容的改变。
-
比如,你把应该有的jar包放从工程中拿走了,或者Maven中存在jar包冲突
举例子:
待解决:不懂这个执行的结果
public class FieldHasNoPolymorphic {
static class Father{
public int money = 1;
public Father(){
money = 2;
showMeTheMoney();
}
public void showMeTheMoney(){
System.out.println("I am Father, i have $" + money);
}
}
static class Son extends Father{
public int money = 3;
public Son(){
money = 4;
showMeTheMoney();//第二行的结果
}
public void showMeTheMoney(){
System.out.println("I am Son, i have $" + money);
}
}
public static void main(String[] args){
Father gay = new Son();
System.out.println("This gay has $" + gay.money);
}
}
// 打印:
I am Son, i have $0
I am Son, i have $4
This gay has $2
————————————————
版权声明:本文为****博主「Mr_tianyanxiaobai」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.****.net/Mr_tianyanxiaobai/article/details/118524307
解析: 写到这边已经懂了。。。。。。。。
第一行结果: I am Son, i have $0
1、FieldHasNoPolymorphic类中的 main方法
public static void main(String[] args){
Father gay = new Son();
System.out.println("This gay has $" + gay.money);
}
字节码信息如下
0 new #2 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Son>
3 dup
4 invokespecial #3 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Son.<init>>
7 astore_1
8 getstatic #4 <java/lang/System.out>
11 new #5 <java/lang/StringBuilder>
14 dup
15 invokespecial #6 <java/lang/StringBuilder.<init>>
18 ldc #7 <This gay has $>
20 invokevirtual #8 <java/lang/StringBuilder.append>
23 aload_1
24 getfield #9 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Father.money>
27 invokevirtual #10 <java/lang/StringBuilder.append>
30 invokevirtual #11 <java/lang/StringBuilder.toString>
33 invokevirtual #12 <java/io/PrintStream.println>
36 return
-
0 new #2 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Son> 表示的是什么意思呢 ?
-
R神的知乎:
- new指令格式:new indexbyte1,indexbyte2
- new指令过程:
- 要执行new指令,Jvm通过计算(indextype1<<8)|indextype2生成一个指向常量池的无符号16位索引。
- 然后JVM根据计算出的索引查找JVM常量池入口。该索引所指向的常量池入口必须为CONSTANT_Class_info。
- 如果该入口尚不存在,那么 JVM将解析这个常量池入口,该入口类型必须是类。
- JVM从堆中为新对象映像分配足够大的空间,并将对象的实例变量设为默认值。最后JVM将指向新对象的引用objectref压入操作数栈。
这边就是在 根据符号引用 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Son> 在堆中建立对象 ,JVM将指向新对象的引用objectref压入操作数栈。因为:Father gay = new Son(); 所以我这边把gay 引用压入栈底,并创建了Son的对象
-
-
3 dup
然后因为invokespecial会消耗掉操作数栈顶的引用作为传给构造器的“gay”参数,所以如果我们希望在invokespecial调用后在操作数栈顶还维持有一个指向新建对象的引用,就得在invokespecial之前先“复制”一份引用——这就是这个dup的来源。
new Test()
这个表达式的作用是:
- 创建并默认初始化一个Test类型的对象
- 调用Test类的signature为
()V 的构造器 - 表达式的值为一个指向这个新建对家的引用。
对应到字节码,我们可以看到:
- new Test 对应上面的(1)
- invokespecial Test.
()V 对应上面的(2) - 然而(3)是怎么来的?
再看实际的字节码:
// operand stack: // ... new Test // ..., ref dup // ..., ref, ref invokespecial Test.<init>()V // ..., ref
可以看到,new字节码指令的作用是创建指定类型的对象实例、对其进行默认初始化,并且将指向该实例的一个引用压入操作数栈顶;
然后因为invokespecial会消耗掉操作数栈顶的引用作为传给构造器的“this”参数,所以如果我们希望在invokespecial调用后在操作数栈顶还维持有一个指向新建对象的引用,就得在invokespecial之前先“复制”一份引用——这就是这个dup的来源。在上面的基础上,我们把这个引用保存到局部变量去,就有:
// operand stack: // ..., ref astore_1 // ...
astore就会把操作数栈顶的那个引用消耗掉,保存到指定的局部变量去。
放俩传送门:
- 如何理解《Java编程思想》描述的“即使没有显式地使用static关键字,构造器实际上也是静态方法”? - RednaxelaFX 的回答 - 知乎
- 如何理解ByteCode、IL、汇编等底层语言与上层语言的对应关系? - RednaxelaFX 的回答 - 知乎
- 作者:RednaxelaFX
链接:https://www.zhihu.com/question/52749416/answer/132831920
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
- 4 invokespecial #3 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Son.
> - invokespecial指令用于调用实例初始化方法,并且消耗掉操作数栈顶的引用
- 接下来进入 Son 的init()
2、接下来进入 Son 的init()
0 aload_0
1 invokespecial #1 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Father.<init>>
4 aload_0
5 iconst_3
6 putfield #2 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Son.money>
9 aload_0
10 iconst_4
11 putfield #2 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Son.money>
14 aload_0
15 invokevirtual #3 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Son.showMeTheMoney>
18 return
- 0 aload_0 将局部变量表下标为0的元素push到操作数栈上
- 1 invokespecial #1 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Father.
>
解析来进入到Father.init()方法
3、解析来进入到Father.init()方法
0 aload_0 // 将局部变量标表中的下标为0 的this 压入栈中
1 invokespecial #1 <java/lang/Object.<init>> // 操作数栈将this出栈 , 并且调用Object的对象方法在生成实体类Parent对象
4 aload_0 // 将局部变量标表中的下标为0 的this继续 压入栈中
5 iconst_1 // 将1 压入操作数栈
6 putfield #2 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Father.money> // 操作数栈将this出栈,并且将保存到方法区parent.monry 类成员变量赋值 = 1
9 aload_0 // 将局部变量标表中的下标为0 的this继续 压入栈中
10 iconst_2 // 将2 压入操作数栈
11 putfield #2 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Father.money> //操作数栈将this出栈,并且将保存到方法区father.monry 类成员变量赋值 = 2
14 aload_0 // 将局部变量标表中的下标为0 的this继续 压入栈中
15 invokevirtual #3 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Father.showMeTheMoney>
// 然后father里面有 invokevirtual,根据动态分配的原则,首先会选择调用实际类型的重写,方法。因此这里虽然 father已经给money赋值了,但是任然会调用 son 的showmoney 方法。 **Java 语言中方法重写的本质:**
18 return
结合前文,对类变量、成员变量、局部变量三种变量的内存分布进行总结
1)类变量:方法区。静态变量随类加载到方法区中。方法区中存储已经被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。线程共享。
2)成员变量:堆。从父类继承下来或在子类中定义的各种类型的字段内容都存在对象的实例数据里,成员变量会在对象实例化时随着对象一起分配在Java堆中。线程共享。
3)局部变量:在栈帧里。一个方法对应一个栈帧,局部变量表占多大空间,在编译期存到Code属性里,局部变量需要赋初始值。结合操作数栈,操作数栈相当于是局部变量进行运算的场所。线程私有。
4)数组:堆。数组也是一个对象。https://www.cnblogs.com/duanxz/p/6102583.html
5)字符串常量 :运行时常量池。运行时常量池是方法区的一部分。常量池是Class文件里的结构,会在类加载后进入方法区的运行时常量池中存放。
-
15 invokevirtual #3 <com/tiza/jvm/chapter05/FieldHasNoPolymorphic$Father.showMeTheMoney>
// 然后father里面有 invokevirtual,根据动态分配的原则,首先会选择调用实际类型的重写,方法。因此这里虽然 father已经给money赋值了,但是任然会调用 son 的showmoney 方法。 Java 语言中方法重写的本质: -
由于此时son里面的money还没有被复制,因此输出了 0 (这个0应该是在编译过程中的JVM类加载阶段为money付的默认值
)。
第二行结果: I am Son, i have $4
正常执行下来,son中的showmoney()方法打印了已经显示赋值过了的数据 = 4
由第一行结果的分析流程可知, son.moner=4 ;
第三次结果:
第三行结果: This gay has $2
下图为 main 函数的字节码
可以看到最后main函数执行的是 father中的money = 2
1.8.7. 方法的调用:虚方法表
在面向对象的编程中,会很频繁的使用到动态分派,如果在每次动态分派的过程中都要重新在类的方法元数据中搜索合适的目标的话就可能影响到执行效率。因此,为了提高性能,JVM 采用在类的方法区建立一个虚方法表 (virtual method table)(非虚方法不会出现在表中)来实现。使用索引表来代替查找。
每个类中都有一个虚方法表,表中存放着各个方法的实际入口。
虚方法表是什么时候被创建的呢?
虚方法表会在类加载的链接阶段被创建并开始初始化,类的变量初始值准备完成之后,JVM 会把该类的方法表也初始化完毕。
举例 1:
举例 2:
interface Friendly{ void sayHello(); void sayGoodbye(); }class Dog{ public void sayHello(){ } public String tostring(){ return "Dog"; }}class Cat implements Friendly { public void eat() { } public void sayHello() { } public void sayGoodbye() { } protected void finalize() { }}class CockerSpaniel extends Dog implements Friendly{ public void sayHello() { super.sayHello(); } public void sayGoodbye() { }}
1.9. 方法返回地址(return address)
存放调用该方法的 pc 寄存器的值。一个方法的结束,有两种方式:
- 正常执行完成
- 出现未处理的异常,非正常退出
无论通过哪种方式退出,在方法退出后都返回到该方法被调用的位置。方法正常退出时,调用者的 pc 计数器的值作为返回地址,即调用该方法的指令的下一条指令的地址。而通过异常退出的,返回地址是要通过异常表来确定,栈帧中一般不会保存这部分信息。
当一个方法开始执行后,只有两种方式可以退出这个方法:
- 执行引擎遇到任意一个方法返回的字节码指令(return),会有返回值传递给上层的方法调用者,简称正常完成出口;
- 一个方法在正常调用完成之后,究竟需要使用哪一个返回指令,还需要根据方法返回值的实际数据类型而定。
- 在字节码指令中,返回指令包含 ireturn(当返回值是 boolean,byte,char,short 和 int 类型时使用),lreturn(Long 类型),freturn(Float 类型),dreturn(Double 类型),areturn。另外还有一个 return 指令声明为 void 的方法,实例初始化方法,类和接口的初始化方法使用。
- 在方法执行过程中遇到异常(Exception),并且这个异常没有在方法内进行处理,也就是只要在本方法的异常表中没有搜索到匹配的异常处理器,就会导致方法退出,简称异常完成出口。
方法执行过程中,抛出异常时的异常处理,存储在一个异常处理表,方便在发生异常的时候找到处理异常的代码
Exception table:from to target type4 16 19 any19 21 19 any
本质上,方法的退出就是当前栈帧出栈的过程。此时,需要恢复上层方法的局部变量表、操作数栈、将返回值压入调用者栈帧的操作数栈、设置 PC 寄存器值等,让调用者方法继续执行下去。
正常完成出口和异常完成出口的区别在于:通过异常完成出口退出的不会给他的上层调用者产生任何的返回值。
1.10. 一些附加信息
栈帧中还允许携带与 Java 虚拟机实现相关的一些附加信息。例如:对程序调试提供支持的信息。
1.11. 栈的相关面试题
- 举例栈溢出的情况?(StackOverflowError)
- 通过 -Xss 设置栈的大小
- 调整栈大小,就能保证不出现溢出么?
- 不能保证不溢出
- 分配的栈内存越大越好么?
- 不是,一定时间内降低了 OOM 概率,但是会挤占其它的线程空间,因为整个空间是有限的。
- 垃圾回收是否涉及到虚拟机栈?
- 不会
- 方法中定义的局部变量是否线程安全?
- 具体问题具体分析。如果对象是在内部产生,并在内部消亡,没有返回到外部,那么它就是线程安全的,反之则是线程不安全的。
运行时数据区 | 是否存在 Error | 是否存在 GC |
---|---|---|
程序计数器 | 否 | 否 |
虚拟机栈 | 是(SOE) | 否 |
本地方法栈 | 是 | 否 |
方法区 | 是(OOM) | 是 |
堆 | 是 | 是 |