传送门
考虑有ϕ(ij)=ϕ(i)∗ϕ(j)∗ϕ(gcd(i,j))gcd(i,j)
然后就可以枚举gcd乱莫反了
推出来最后就是
ans=h∑T(h)i,j∑hnϕ(hi)ϕ(hj)dis(p[ih],p[jh])
p[i]表示权值为i的点
T(n)=d∣n∑ϕ(d)μ(dn)d
然后随便虚树搞一下就完了
复杂度O(nlog2n)
#include<bits/stdc++.h>
using namespace std;
const int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ob==ib)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ob==ib)?EOF:*ib++;
}
#define gc getchar
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
#define ll long long
#define re register
#define pii pair<int,int>
#define fi first
#define se second
#define pb push_back
#define cs const
#define bg begin
template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int mod=1e9+7;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline void Add(int &a,int b){(a+=b)>=mod?a-=mod:0;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline void Dec(int &a,int b){(a-=b)<0?a+=mod:0;}
inline int mul(int a,int b){return 1ll*a*b%mod;}
inline void Mul(int &a,int b){a=1ll*a*b%mod;}
inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
cs int N=200005;
int mu[N],phi[N],pr[N],T[N],tot;
bitset<N> vis;
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
inline void init(){
cs int len=N-5;
mu[1]=phi[1]=1;
for(int i=2;i<=len;i++){
if(!vis[i])pr[++tot]=i,phi[i]=i-1,mu[i]=mod-1;
for(int j=1;j<=tot&&i*pr[j]<=len;j++){
vis[i*pr[j]]=1;
if(i%pr[j]==0){phi[i*pr[j]]=phi[i]*pr[j];break;}
phi[i*pr[j]]=phi[i]*phi[pr[j]],mu[i*pr[j]]=mod-mu[i];
}
}
for(int i=1;i<=len;i++){
int iv=Inv(phi[i]);
for(int j=1;i*j<=len;j++)
Add(T[i*j],mul(mul(mu[j],i),iv));
}
}
int dep[N],fa[N],top[N],siz[N],son[N],in[N],out[N],dfn;
vector<int> e[N];
void dfs1(int u){
siz[u]=1;
for(int i=0;i<e[u].size();i++){
int v=e[u][i];
if(v==fa[u])continue;
fa[v]=u,dep[v]=dep[u]+1;
dfs1(v),siz[u]+=siz[v];
if(siz[v]>siz[son[u]])son[u]=v;
}
}
void dfs2(int u,int tp){
top[u]=tp,in[u]=++dfn;
if(son[u])dfs2(son[u],tp);
for(int i=0;i<e[u].size();i++){
int v=e[u][i];
if(v==fa[u]||v==son[u])continue;
dfs2(v,v);
}
out[u]=dfn;
}
inline int Lca(int u,int v){
while(top[u]!=top[v]){
if(dep[top[u]]<dep[top[v]])swap(u,v);
u=fa[top[u]];
}
return dep[u]<dep[v]?u:v;
}
inline int dis(int u,int v){
return dep[u]+dep[v]-2*dep[Lca(u,v)];
}
int pos[N],a[N],n;;
namespace XS{
vector<pii> e[N];
int p[N],s[N],sum,tot,ans;
int stk[N],top;
inline bool comp(int a,int b){
return in[a]<in[b];
}
inline void addedge(int u,int v){
int d=dis(u,v);
e[u].pb(pii(v,d));
}
void dfs(int u){
for(pii &x:e[u]){
int v=x.fi;
dfs(v);
Add(ans,mul(x.se,mul(dec(sum,s[v]),s[v])));
Add(s[u],s[v]);
}
}
void dfs2(int u){
for(pii &x:e[u])
dfs2(x.fi);
s[u]=0,e[u].clear();
}
inline int calc(int x){
top=tot=sum=ans=0;
for(int i=1;i*x<=n;i++)p[++tot]=pos[i*x],Add(sum,phi[i*x]),s[p[tot]]=phi[i*x];
sort(p+1,p+tot+1,comp);
stk[++top]=p[1];
for(int i=2;i<=tot;i++){
int lca=Lca(stk[top],p[i]);
while(in[lca]<in[stk[top]]){
if(in[lca]>=in[stk[top-1]]){
addedge(lca,stk[top--]);
if(stk[top]!=lca)stk[++top]=lca;
break;
}
addedge(stk[top-1],stk[top]),top--;
}
stk[++top]=p[i];
}
while(top>1)addedge(stk[top-1],stk[top]),top--;
dfs(stk[1]),dfs2(stk[1]);
return mul(ans,2);
}
}
int main(){
init();
n=read();
for(int i=1;i<=n;i++)a[i]=read(),pos[a[i]]=i;
for(int i=1;i<n;i++){
int u=read(),v=read();
e[u].pb(v),e[v].pb(u);
}
dfs1(1),dfs2(1,1);
int res=0;
for(int h=1;h<=n;h++){
Add(res,mul(T[h],XS::calc(h)));
}
cout<<mul(res,Inv(mul(n,n-1)));
}