AGC041

B

降序排序

  • (ile p)(i)一定合法
  • (i>p)
    (a_i+m<a_{p})则显然不合法
    那么([1,p)[i,n])这些全选。至于(xin[p,i))中间这些点,最多升至(a_i+m),由于(a_xge a_i),其不会消耗完天数,故边界条件就是将其全部升至(a_i+m)

C

(n=5)

aabc.
..bcd
fee.d
f.ghh
iigjj

(n=7)

aabbcc.
ddee..c
ffgg..c
....geb
....geb
....fda
....fda

(3|n)
(3 imes 3)的对角线拼起来

(2|n)
大概是这样

aa....cd
bb....cd
cdaa....
cdbb....
..cdaa..
..cdbb..
....cdaa
....cdbb

然后(n)不是(3)倍数的奇数,(7 imes 7)之后是偶数块

D

做法1
合法的充要条件

  • (a_1le a_2le cdotsle a_{n-1}le a_n)
  • (forall kin[1,n),.s.t~sumlimits_{i=1}^{k+1} a_i>sumlimits_{i=n-k+1}^n a_iLongrightarrow sumlimits_{i=1}^{k+1} a_i>sumlimits_{i=n-k+1}^n a_i(k=leftlfloorfrac{n-1}{2} ight floor))

(2|n),令(k=leftlfloorfrac{n-1}{2} ight floor)

  • (a_{k+2}-a_ile a_{k+2}-a_{i-1}(iin(k+2,1)))(a_{i}-a_{k+2}le a_{i+1}-a_{k+2}(iin(k+2,n)))
  • (sumlimits_{i=1}^{k+1} a_i>sumlimits_{i=n-k+1}^n a_iLongrightarrow a_{k+2}>(sumlimits_{i=n-k+1}^n a_i-a_{k+2})+(sumlimits_{i=1}^{k+1}a_{k+2}-a_i))

(f_{i,s}(i<k+2))为前(i)个数,与(a_{k+2})差的和为(s)
为满足差的单调性,考虑分层转移,即在最外层降序枚举与(a_{k+2})的差(l),然后内层(f_{i+1,s+l}=f_{i+1,s+l}+f_{i,s})。我们有(ille n)。故复杂度为(O(n^2logn))
(g_{i,s})为后(i)个数,与(a_{k+2})的差的和为(s)。转移类似

(n)不是(2)的倍数,令(k=leftlfloorfrac{n-1}{2} ight floor)

  • (a_{k+1}-a_ile a_{k+1}-a_{i-1}(iin(k+1,1)))(a_{i}-a_{k+1}le a_{i+1}-a_{k+1}(iin(k+1,n)))
  • (sumlimits_{i=1}^{k} a_i>sumlimits_{i=n-k+1}^n a_iLongrightarrow a_{k+1}>(sumlimits_{i=n-k+1}^n a_i-a_{k+1})+(sumlimits_{i=1}^{k}a_{k+1}-a_i))

做法2
(a_i=1+sum limits_{j=1}^i b_i)

  • (sum b_i<n,b_ige 0)
  • (forall kin[1,n),.s.t~sumlimits_{i=1}^{k+1} (1+sum limits_{j=1}^i b_i)>sumlimits_{i=n-k+1}^n (1+sum limits_{j=1}^i b_i)(k=leftlfloorfrac{n-1}{2} ight floor))

第二个限制可以化简成(sumlimits_{i=1}^{n}c_ib_ile 0)。其中(c_i)可以分(n)的奇偶性得到。特殊的,其中只有(c_1)为负数,且为(-1)
即约数条件可以重新写为

  • (b_1le n-1-sumlimits_{i=2}^n b_i)
  • (b_1ge sumlimits_{i=2}^n c_ib_i)

在已知(b_i(iin[2,n]))的条件下,合法的(b_1)的个数为(max(0,n-sumlimits_{i=2}^n (c_i+1)b_i))
(f_j)(sumlimits_{i=2}^n (c_i+1)b_i)=j)的方案数,(ans=sumlimits_{i=0}^{n-1}(n-i)f_i)

E

这题比较简单

F

这题题解有点难写