sklearn4_混合分类器
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share
混合分类器,逻辑回归,支持向量,knn
multiple_classifier.py
# -*- coding: utf-8 -*- """ Created on Sat Jan 6 18:02:19 2018 @author: daxiong """ #导入sklearn测试数据库 from sklearn import datasets #用于训练数据和测试数据分类 from sklearn.cross_validation import train_test_split #导入逻辑回归分类器 from sklearn.linear_model import LogisticRegression #导入knn分类器 from sklearn.neighbors import KNeighborsClassifier #导入支持向量分类器 from sklearn.svm import SVC #加载 iris 的数据,把属性存在 X,类别标签存在 y iris = datasets.load_iris() iris_X = iris.data iris_y = iris.target #把数据集分为训练集和测试集,其中 test_size=0.3,即测试集占总数据的 30% X_train, X_test, y_train, y_test = train_test_split( iris_X, iris_y, test_size=0.3) #建立逻辑回归分类器 model_logistic=LogisticRegression() # 把数据交给模型训练 model_logistic.fit(X_train, y_train) #建立knn分类器 model_knn = KNeighborsClassifier() #训练 model_knn.fit(X_train, y_train) #建立支持向量分类器 modle_svc = SVC() # 把数据交给模型训练 modle_svc.fit(X_train, y_train) #模型评分 print('Score: %.2f' % model_logistic.score(X_test, y_test)) print('Score: %.2f' % model_knn.score(X_test, y_test)) print('Score: %.2f' % modle_svc.score(X_test, y_test))
https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)