2019 SDN上机第5次作业 1.浏览RYU官网学习RYU控制器的安装和RYU开发入门教程,提交你对于教程代码的理解,包括但不限于: 2.根据官方教程和提供的示例代码(SimpleSwitch.py),将具有自学习功能的交换机代码(SelfLearning.py)补充完整 3.在mininet创建一个最简拓扑,并连接RYU控制器 4.验证自学习交换机的功能,提交分析过程和验证结果 5.写下你的实验体会

描述官方教程实现了一个什么样的交换机功能?

官方教程实现了一个将接收到的数据包发送到所有端口的交换机功能

控制器设定交换机支持什么版本的OpenFlow?

OpenFlow 1.0

控制器设定了交换机如何处理数据包?

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def packet_in_handler(self, ev):
        msg = ev.msg
        dp = msg.datapath
        ofp = dp.ofproto
        ofp_parser = dp.ofproto_parser

        actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]
        out = ofp_parser.OFPPacketOut(
            datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
            actions=actions)
        dp.send_msg(out)

类中添加了一个新方法“packet_in_handler”。当Ryu接收到消息中的OpenFlow数据包时调用此函数。诀窍是“set-ev-cls”装饰器。这个decorator告诉Ryu何时应该调用修饰函数。每次Ryu在消息中收到一个packet_时,都会调用此函数。使用“MAIN_DISPATCHER”作为第二个参数意味着仅在协商完成后才调用此函数。之后定义packet_in数据结构对象,数据路径对象datapath,OpenFlow协议和解析过程;定义交换机的动作,如何发送数据包;定义Ryu向交换机发送的packet_out内容,最后发送消息

2.根据官方教程和提供的示例代码(SimpleSwitch.py),将具有自学习功能的交换机代码(SelfLearning.py)补充完整

修改后代码如下

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_0

from ryu.lib.mac import haddr_to_bin
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch(app_manager.RyuApp):
    # TODO define OpenFlow 1.0 version for the switch
    # add your code here
    OFP_VERSIONS=[ofproto_v1_0.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(SimpleSwitch, self).__init__(*args, **kwargs)
        self.mac_to_port = {}
    
    
    def add_flow(self, datapath, in_port, dst, src, actions):
        ofproto = datapath.ofproto

        match = datapath.ofproto_parser.OFPMatch(
            in_port=in_port,
            dl_dst=haddr_to_bin(dst), dl_src=haddr_to_bin(src))

        mod = datapath.ofproto_parser.OFPFlowMod(
            datapath=datapath, match=match, cookie=0,
            command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0,
            priority=ofproto.OFP_DEFAULT_PRIORITY,
            flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions)
        # TODO send modified message out
        # add your code here
        datapath.send_msg(mod)
        
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto

        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocol(ethernet.ethernet)

        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            return
        if eth.ethertype == ether_types.ETH_TYPE_IPV6:
            # ignore ipv6 packet
            return       
        
        dst = eth.dst
        src = eth.src
        dpid = datapath.id
        self.mac_to_port.setdefault(dpid, {})

        self.logger.info("packet in DPID:%s MAC_SRC:%s MAC_DST:%s IN_PORT:%s", dpid, src, dst, msg.in_port)

        # learn a mac address to avoid FLOOD next time.
        self.mac_to_port[dpid][src] = msg.in_port

        if dst in self.mac_to_port[dpid]:
            out_port = self.mac_to_port[dpid][dst]
        else:
            out_port = ofproto.OFPP_FLOOD

        # TODO define the action for output
        # add your code here
        actions=[datapath.ofproto_parser.OFPActionOutput(out_port)]

        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            self.logger.info("add flow s:DPID:%s Match:[ MAC_SRC:%s MAC_DST:%s IN_PORT:%s ], Action:[OUT_PUT:%s] ", dpid, src, dst, msg.in_port, out_port)
            self.add_flow(datapath, msg.in_port, dst, src, actions)

        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data
        

        # TODO define the OpenFlow Packet Out
        # add your code here
        out = datapath.ofproto_parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,in_port=msg.in_port, actions=actions,data=data)
        datapath.send_msg(out)
    print ("PACKET_OUT...")

3.在mininet创建一个最简拓扑,并连接RYU控制器

python构建拓扑脚本如下

from mininet.topo import Topo

class MyTopo(Topo):

    def __init__(self):

        # initilaize topology
        Topo.__init__(self)

        # add hosts and switches
        h1 = self.addHost('h1')
        h2 = self.addHost('h2')

        s1 = self.addSwitch('s1')

        # add links
        self.addLink(h1, s1, 1, 1)
        self.addLink(h2, s1, 1, 2)
        
topos = {'mytopo': (lambda: MyTopo())}

运行结果

2019 SDN上机第5次作业
1.浏览RYU官网学习RYU控制器的安装和RYU开发入门教程,提交你对于教程代码的理解,包括但不限于:
2.根据官方教程和提供的示例代码(SimpleSwitch.py),将具有自学习功能的交换机代码(SelfLearning.py)补充完整
3.在mininet创建一个最简拓扑,并连接RYU控制器
4.验证自学习交换机的功能,提交分析过程和验证结果
5.写下你的实验体会

4.验证自学习交换机的功能,提交分析过程和验证结果

2019 SDN上机第5次作业
1.浏览RYU官网学习RYU控制器的安装和RYU开发入门教程,提交你对于教程代码的理解,包括但不限于:
2.根据官方教程和提供的示例代码(SimpleSwitch.py),将具有自学习功能的交换机代码(SelfLearning.py)补充完整
3.在mininet创建一个最简拓扑,并连接RYU控制器
4.验证自学习交换机的功能,提交分析过程和验证结果
5.写下你的实验体会
创建一个拓扑后,没有ryu控制器连接,执行pingall命令的时候h1、h2之间是不通的,接入ryu控制器之后使用pingall命令的时候则可以互通,查看s1所有流表时会发现多个流表

5.写下你的实验体会

本次实验总的来说还不错,安装过程没多大问题,一次性安装完成。就是在运行python脚本让ryu控制器连接的时候,会出现“ImportError: No module named 's'”这样的报错,百度了才知道,这是找不到python脚本,将脚本路径改了之后就行了。经过这次实验,我大概了解了ryu控制器的作用