Rist-Number(淘选)
Problem J. Rist-Number
• Time Limit: 1000ms
• Memory Limit: 65536KB
Problem Description
Rist-Number is a kind of integers that should satisfy some restrictions. Define S
as the set of all Rist-Numbers, then we have
1. 1 2 S
2. 3 × S 2 S
3. 7 × S 2 S
4. 15 × S 2 S
5. 31 × S 2 S
Obviously, S is an infinite set. Given n, judge whether n 2 S is true.
Input Format
The input contains multiple test cases.
The first line of input contains an integer T(T 100), which denotes the number
of test cases.
The following T lines describe all the queries, each with an integer n(1 n
10000).
Output Format
For each test case, output True if the statement is true, otherwise output False.
Sample Input
2
1
2
Sample Output
True
False
1
题意:
给出 T(1 ~ 100),代表有 T 组数据。存在一个集合,这个集合里面的任意一个数都可以由原来的数 X 3,X 7,X 15,X 31 而得(1也在该集合中),每组数据都有一个 N(1 ~ 10000),问这个数 N 是否存在于这个集合中,是则输出 True,不是则输出 False。
思路:
类似于素数筛选。读题有欠缺,以为 6 也存在于这个集合中,2 X 3 中的 2 明显不满足条件。所以满足的是并不是只要被 3,7,15,31中的任意一个整除就行了。要判断的是这个数的因子是不是都只是 3,7,15,31。误点在这里。离线筛选好所有数据后,直接输出即可。
AC:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int MAX = 10005; bool num[MAX]; void solve () { for (int i = 0; i < MAX; ++i) num[i] = false; num[1] = true; for (int i = 1; i < MAX; ++i) { if (num[i]) { for (int j = i * 3; j < MAX; j *= 3) num[j] = true; for (int j = i * 7; j < MAX; j *= 7) num[j] = true; for (int j = i * 15; j < MAX; j *= 15) num[j] = true; for (int j = i * 31; j < MAX; j *= 31) num[j] = true; } } } int main () { int t; scanf("%d", &t); solve(); while (t--) { int n; scanf("%d", &n); if (num[n]) printf("True\n"); else printf("False\n"); } return 0; }