填充NumPy数组numpy.ndarray e。为元素分配新值并更改相同值的相邻元素
另一篇类似的帖子,名为 Flood Fill in Python 这是一个关于洪水填充的非常普遍的问题,答案仅包含一个广泛的伪代码示例。我正在寻找使用 numpy
或 scipy
的显式解决方案。
Another, similar post called Flood Fill in Python is a very general question on flood fill and the answer only contains a broad pseudo code example. I'm look for an explicit solution with numpy
or scipy
.
让我们以这个数组为例:
Let's take this array for example:
a = np.array([
[0, 1, 1, 1, 1, 0],
[0, 0, 1, 2, 1, 1],
[0, 1, 1, 1, 1, 0]
])
用于选择元素 0、0
和值 3
的洪水填充,我希望:
For selecting element 0, 0
and flood fill with value 3
, I'd expect:
[
[3, 1, 1, 1, 1, 0],
[3, 3, 1, 2, 1, 1],
[3, 1, 1, 1, 1, 0]
]
用于选择元素 0、1
和值 3
的洪水填充,我希望:
For selecting element 0, 1
and flood fill with value 3
, I'd expect:
[
[0, 3, 3, 3, 3, 0],
[0, 0, 3, 2, 3, 3],
[0, 3, 3, 3, 3, 0]
]
对于选择元素 0、5
和值 3
的洪水填充,我期望:
For selecting element 0, 5
and flood fill with value 3
, I'd expect:
[
[0, 1, 1, 1, 1, 3],
[0, 0, 1, 2, 1, 1],
[0, 1, 1, 1, 1, 0]
]
这应该是一个相当基本的操作,不是吗?我忽略了哪个 numpy
或 scipy
方法?
This should be a fairly basic operation, no? Which numpy
or scipy
method am I overlooking?
方法#1
模块 scikit-image
提供了内置功能,可对 skimage.segmentation.flood_fill
-
Module scikit-image
offers the built-in to do the same with skimage.segmentation.flood_fill
-
from skimage.morphology import flood_fill
flood_fill(image, (x, y), newval)
示例运行-
In [17]: a
Out[17]:
array([[0, 1, 1, 1, 1, 0],
[0, 0, 1, 2, 1, 1],
[0, 1, 1, 1, 1, 0]])
In [18]: flood_fill(a, (0, 0), 3)
Out[18]:
array([[3, 1, 1, 1, 1, 0],
[3, 3, 1, 2, 1, 1],
[3, 1, 1, 1, 1, 0]])
In [19]: flood_fill(a, (0, 1), 3)
Out[19]:
array([[0, 3, 3, 3, 3, 0],
[0, 0, 3, 2, 3, 3],
[0, 3, 3, 3, 3, 0]])
In [20]: flood_fill(a, (0, 5), 3)
Out[20]:
array([[0, 1, 1, 1, 1, 3],
[0, 0, 1, 2, 1, 1],
[0, 1, 1, 1, 1, 0]])
方法2
我们可以使用 skimage.measure.label
和一些 array-masking
-
from skimage.measure import label
def floodfill_by_xy(a,xy,newval):
x,y = xy
l = label(a==a[x,y])
a[l==l[x,y]] = newval
return a
使用基于SciPy的标签
函数- scipy.ndimage.measurements.label
,大多数情况下都相同-
To make use of SciPy based label
function - scipy.ndimage.measurements.label
, it would mostly be the same -
from scipy.ndimage.measurements import label
def floodfill_by_xy_scipy(a,xy,newval):
x,y = xy
l = label(a==a[x,y])[0]
a[l==l[x,y]] = newval
return a
注意:这些将用作原位编辑。
Note : These would work as in-situ edits.