如何使phantomJS Webdriver等待加载特定的HTML元素,然后返回page.source?
我已经为网络抓取对象开发了以下代码.
I have developed the code below for a web crawling object.
它以两个日期作为输入,然后在这两个日期之间创建日期列表,并将每个日期附加到包含位置天气信息的网页网址中.然后,它将HTML数据表转换为Dataframe,然后将数据作为csv文件存储在存储中(基本链接为:
It takes two dates as inputs.Then creates a list of dates between these two dates and attach each one to a webpage url which contains weather information of a location. Then it converts HTML tables of data into Dataframe and after that stores data as csv file in storage (the base link is: https://www.wunderground.com/history/daily/ir/mashhad/OIMM/date/2019-1-3 and as you can see in this example the date is 2019-1-3):
from datetime import timedelta, date
from bs4 import BeautifulSoup
from selenium import webdriver
import pandas as pd
from furl import furl
import os
import time
class WebCrawler():
def __init__(self, st_date, end_date):
if not os.path.exists('Data'):
os.makedirs('Data')
self.path = os.path.join(os.getcwd(), 'Data')
self.driver = webdriver.PhantomJS()
self.base_url = 'https://www.wunderground.com/history/daily/ir/mashhad/OIMM/date/'
self.st_date = st_date
self.end_date = end_date
def date_list(self):
# Create list of dates between two dates given as inputs.
dates = []
total_days = int((self.end_date - self.st_date).days + 1)
for i in range(total_days):
date = self.st_date + timedelta(days=i)
dates.append(date.strftime('%Y-%m-%d'))
return dates
def create_link(self, attachment):
# Attach dates to base link
f = furl(self.base_url)
f.path /= attachment
f.path.normalize()
return f.url
def open_link(self, link):
# Opens link and visits page and returns html source code of page
self.driver.get(link)
html = self.driver.page_source
return html
def table_to_df(self, html):
# Finds table of weather data and converts it into pandas dataframe and returns it
soup = BeautifulSoup(html, 'lxml')
table = soup.find("table",{"class":"tablesaw-sortable"})
dfs = pd.read_html(str(table))
df = dfs[0]
return df
def to_csv(self, name, df):
# Save the dataframe as csv file in the defined path
filename = name + '.csv'
df.to_csv(os.path.join(self.path,filename), index=False)
这是我要使用WebCrawler
对象的方式:
This is the way I want to use the WebCrawler
object:
date1 = date(2018, 12, 29)
date2 = date(2019, 1, 1)
# Initialize WebCrawler object
crawler = WebCrawler(st_date=date1, end_date=date2)
dates = crawler.date_list()
for day in dates:
print('**************************')
print('PROCESSING : ', day)
link = crawler.create_link(day)
print('WAITING... ')
time.sleep(3)
print('VISIT WEBPAGE ... ')
html = crawler.open_link(link)
print('DATA RETRIEVED ... ')
df = crawler.table_to_df(html)
print(df.head(3))
crawler.to_csv(day, df)
print('DATA SAVED ...')
发生的问题是循环的第一次迭代运行完美,但是第二次循环停止并显示错误No tables where found
(发生在table = soup.find("table",{"class":"tablesaw-sortable"})
行中),这是因为页面源是在WebCrawler.open_link
之前返回的网页完全加载了包括表格在内的网页内容(包含天气信息).网站也有可能由于服务器太忙而拒绝该请求.
The problem which occurs is that the first iteration of loop runs perfect but the second one stops with an error which says No tables where found
(occurs in table = soup.find("table",{"class":"tablesaw-sortable"})
line) and that's because page source is returned by WebCrawler.open_link
before the webpage fully load the contents of webpage including the table (containing weather information). there is also a probability that website rejects the request because it's making the servers too busy.
无论如何,我们是否可以建立一个循环,不断尝试打开链接,直到找到表为止,或者至少等到表被加载然后返回表为止?
Is there anyway that we could build a loop that keep trying to open the link until when it could find the table, or at least wait until table is loaded and then return the table?
我使用 https://stackoverflow.com重写了代码/a/26567563/4159473 由@mildmelon提出的解决方案,在每次向服务器发送请求和请求页面源之间,我也使用了一些延迟:
I rewrote the code using the https://stackoverflow.com/a/26567563/4159473 solution which was suggested by @mildmelon and I also used some delays between each time sending request to server and asking for the page source:
from datetime import timedelta, date
from bs4 import BeautifulSoup
from selenium import webdriver
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.by import By
from selenium.common.exceptions import TimeoutException
import pandas as pd
from furl import furl
import os
import time
class WebCrawler():
def __init__(self, st_date, end_date):
if not os.path.exists('Data'):
os.makedirs('Data')
self.path = os.path.join(os.getcwd(), 'Data')
self.driver = webdriver.PhantomJS()
self.delay_for_page = 7
self.base_url = 'https://www.wunderground.com/history/daily/ir/mashhad/OIMM/date/'
self.st_date = st_date
self.end_date = end_date
def date_list(self):
# Create list of dates between two dates given as inputs.
dates = []
total_days = int((self.end_date - self.st_date).days + 1)
for i in range(total_days):
date = self.st_date + timedelta(days=i)
dates.append(date.strftime('%Y-%m-%d'))
return dates
def create_link(self, attachment):
# Attach dates to base link
f = furl(self.base_url)
f.path /= attachment
f.path.normalize()
return f.url
def open_link(self, link):
# Opens link and visits page and returns html source code of page
self.driver.get(link)
myElem = WebDriverWait(self.driver, self.delay_for_page)\
.until(EC.presence_of_element_located((By.CLASS_NAME, 'tablesaw-sortable')))
def table_to_df(self, html):
# Finds table of weather data and converts it into pandas dataframe and returns it
soup = BeautifulSoup(html, 'lxml')
table = soup.find("table",{"class":"tablesaw-sortable"})
dfs = pd.read_html(str(table))
df = dfs[0]
return df
def to_csv(self, name, df):
# Save the dataframe as csv file in the defined path
filename = name + '.csv'
df.to_csv(os.path.join(self.path,filename), index=False)
date1 = date(2019, 2, 1)
date2 = date(2019, 3, 5)
# Initialize WebCrawler object
crawler = WebCrawler(st_date=date1, end_date=date2)
dates = crawler.date_list()
for day in few_dates:
print('**************************')
print('DATE : ', day)
link = crawler.create_link(day)
print('WAITING ....')
print('')
time.sleep(12)
print('OPENING LINK ... ')
try:
crawler.open_link(link)
html = crawler.driver.page_source
print( "DATA IS FETCHED")
df = crawler.table_to_df(html)
print(df.head(3))
crawler.to_csv(day, df)
print('DATA SAVED ...')
except TimeoutException:
print( "NOT FETCHED ...!!!")
获取天气信息没有问题.我猜每个请求之间的延迟会导致更好的性能. myElem = WebDriverWait(self.driver, self.delay_for_page)\.until(EC.presence_of_element_located((By.CLASS_NAME, 'tablesaw-sortable')))
行也提高了速度.
The weather information is fetched without problem. I guess delays between each request resulted in better performance. The line myElem = WebDriverWait(self.driver, self.delay_for_page)\.until(EC.presence_of_element_located((By.CLASS_NAME, 'tablesaw-sortable')))
has also improved speed.